Skip to main content
Log in

Controlled synthesis of hierarchical CuS architectures by a recrystallization growth process in a microemulsion system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nano- and micro-sized hierarchical copper monosulfide (CuS) architectures composed of nanoplates have been successfully synthesized via a recrystallization growth process in a microemulsion system. In our method, the spatial separation of two reactants and low-reaction temperature can decrease the rate of growth of the CuS nuclei, resulting in the formation of the poorly crystallized CuS aggregates in an oil-in-water (o/w) microemulsion. The hierarchical CuS nanostructures are formed easily from poorly crystallized CuS by a recrystallization growth process at a higher temperature. Furthermore, the flowerlike CuS architectures can be obtained by a kinetically controlled dissolution–recrystallization mechanism. In addition, the photocatalytic activity of the hierarchical CuS architectures has been evaluated by the degradation of methylene blue solution in the presence of hydrogen peroxide under natural light, showing that the as-prepared hierarchical CuS architectures exhibit high-photocatalytic activity for the degradation of methylene blue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shen G, Bando Y, Golberg D (2006) Cryst Growth Des 7:35

    Article  Google Scholar 

  2. Zhang H, Zhu Q, Zhang Y, Wang Y, Zhao L, Yu B (2007) Adv Funct Mater 17:2766

    Article  CAS  Google Scholar 

  3. Yu P, Zhang X, Wang D, Wang L, Ma Y (2008) Cryst Growth Des 9:528

    Article  Google Scholar 

  4. Ni X, Zhao Q, Zhang D, Zhang X, Zheng H (2006) J Phys Chem C 111:601

    Article  Google Scholar 

  5. Liu B, Zeng HC (2004) J Am Chem Soc 126:16744

    Article  CAS  Google Scholar 

  6. Cao JL, Shao GS, Ma TY, Wang Y, Ren TZ, Wu SH, Yuan ZY (2009) J Mater Sci 44:6717. doi:10.1007/s10853-009-3583-8

    Article  CAS  Google Scholar 

  7. Liu B, Wei S, Xing Y, Liu D, Shi Z, Liu X, Sun X, Hou S, Su Z (2010) Chem Eur J 16:6625

    CAS  Google Scholar 

  8. Fang Z, Lin X, Liu Y, Fan Y, Zhu Y, Ni Y, Wei X (2010) J Mater Sci 45:6805. doi:10.1007/s10853-010-4778-8

    Google Scholar 

  9. Kuang DB, Lei BX, Pan YP, Yu XY, Su CY (2009) J Phys Chem C 113:5508

    Article  CAS  Google Scholar 

  10. Oaki Y, Imai H (2005) Angew Chem Int Ed 44:6571

    Article  CAS  Google Scholar 

  11. Li Y, Liu J, Huang X, Li G (2007) Cryst Growth Des 7:1350

    Article  Google Scholar 

  12. Zhang Z, Shao X, Yu H, Wang Y, Han M (2004) Chem Mater 17:332

    Article  Google Scholar 

  13. Jiang C, Zhang W, Liu Y, Qian Y (2006) Cryst Growth Des 6:2603

    Article  CAS  Google Scholar 

  14. Li X, Xiong Y, Li Z, Xie Y (2006) Inorg Chem 45:3493

    Article  CAS  Google Scholar 

  15. Dong H, Chen Z, Sun L, Zhou L, Ling Y, Yu C, Tan HH, Jagadish C, Shen X (2009) J Phys Chem C 113:10511

    Article  CAS  Google Scholar 

  16. Yan H, Wang W, Xu H (2008) J Cryst Growth 310:2640

    Article  CAS  Google Scholar 

  17. Cheng Z, Wang S, Si D, Geng B (2010) J Alloy Compd 492:L44

    Article  CAS  Google Scholar 

  18. Pan D, Wang Q, An L (2009) J Mater Chem 19:1063

    Article  CAS  Google Scholar 

  19. Silvester EJ, Grieser F, Sexton BA, Healy TW (1991) Langmuir 7:2917

    Article  CAS  Google Scholar 

  20. Zhang X, Wang G, Gu A, Wei Y, Fang B (2008) Chem Commun 5945

  21. Yuan KD, Wu JJ, Liu ML, Zhang LL, Xu FF, Chen LD, Huang FQ (2008) Appl Phys Lett 93:132106

    Article  Google Scholar 

  22. Raevskaya AE, Stroyuk AL, Kuchmii SY, Kryukov AI (2004) J Mol Catal A Chem 212:259

    Article  CAS  Google Scholar 

  23. An C, Wang S, He J, Wang Z (2008) J Cryst Growth 310:266

    Article  CAS  Google Scholar 

  24. Roy P, Mondal K, Srivastava SK (2008) Cryst Growth Des 8:1530

    Article  CAS  Google Scholar 

  25. Lu QY, Gao F, Zhao DY (2002) Nano Lett 2:725

    Article  CAS  Google Scholar 

  26. Zhu Y, Guo X, Jin J, Shen Y, Ding W (2007) J Mater Sci 42:1042. doi:10.1007/s10853-006-1424-6

    Article  CAS  Google Scholar 

  27. Yu XL, Cao CB, Zhu HS, Li QS, Liu CL, Gong QH (2007) Adv Funct Mater 17:1397

    Article  CAS  Google Scholar 

  28. Nagarathinam M, Saravanan K, Leong WL, Balaya P, Vittal JJ (2009) Cryst Growth Des 9:4461

    Article  CAS  Google Scholar 

  29. Thongtem T, Phuruangrat A, Thongtem S (2007) J Mater Sci 42:9316. doi:10.1007/s10853-007-1909-y

    Article  CAS  Google Scholar 

  30. Li F, Wu J, Qin Q, Li Z, Huang X (2010) Powder Technol 198:267

    Article  CAS  Google Scholar 

  31. Wu C, Yu S-H, Antonietti M (2006) Chem Mater 18:3599

    Article  CAS  Google Scholar 

  32. Shen X-P, Zhao H, Shu HQ, Zhou H, Yuan AH (2009) J Phys Chem Solids 70:422

    Article  CAS  Google Scholar 

  33. Jiang D, Hu W, Wang H, Shen B, Deng Y (2011) J Colloid Interf Sci 357:317

    Article  CAS  Google Scholar 

  34. Jiang D, Hu W, Wang H, Shen B, Deng Y (2011) Colloid Surf A Physicochem Eng Asp 384:228

    Article  CAS  Google Scholar 

  35. Zhang P, Gao L (2003) J Mater Chem 13:2007

    Article  CAS  Google Scholar 

  36. Chiu G (1977) J Colloid Interface Sci 62:193

    Article  CAS  Google Scholar 

  37. Weimin D, Xuefeng Q, Xiaodong M, Qiang G, Hongliang C, Jie Y (2007) Chem Eur J 13:3241

    Article  Google Scholar 

  38. Lu J, Xie Y, Xu F, Zhu L (2002) J Mater Chem 12:2755

    Article  CAS  Google Scholar 

  39. Haram SK, Mahadeshwar AR, Dixit SG (1996) J Phys Chem 100:5868

    Article  CAS  Google Scholar 

  40. Xu S, Wang Q, Cheng Jh, Meng Qh, Jiao Y (2010) Powder Technol 199:139

    Article  CAS  Google Scholar 

  41. Ding TY, Wang MS, Guo SP, Guo GC, Huang JS (2008) Mater Lett 62:4529

    Article  CAS  Google Scholar 

  42. Basu M, Sinha AK, Pradhan M, Sarkar S, Negishi Y, Govind, Pal T (2010) Environ Sci Technol 44:6313

    Article  CAS  Google Scholar 

  43. Chen LY, Zhang ZD, Wang WZ (2008) J Phys Chem C 112:4117

    Article  CAS  Google Scholar 

  44. Wei TY, Wang YY, Wan CC (1990) J Photochem Photobiol A 55:115

    Article  CAS  Google Scholar 

  45. Wong C, Chu W (2003) Environ Sci Technol 37:2310

    Article  CAS  Google Scholar 

  46. Zhang L, Yang H, Yu J, Shao F, Li L, Zhang F, Zhao H (2009) J Phys Chem C 113:5434

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51001075), Program of Shanghai Subject Chief Scientist (Grant No. 11XD1402700), following research project supported by the “Dawn” Program of Shanghai Education Commission (Grant No. 10GG06), and National Science Foundation for Distinguished Young Scholars of China (Grant No. 51125016). The authors would like to thank Dr. Bin Chen for the TEM measurements and the Instrumental Analysis Center of Shanghai Jiao Tong University for sample characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yida Deng.

Electronic supplementary material

10853_2012_6372_MOESM1_ESM.jpg

Fig. S1 TEM images of the hierarchical CuS nanostructures prepared with 0.04 g copper naphthenate kept in ethanol for different ripening times: (a) 20 days and (c) 40 days. (JPEG 202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, D., Hu, W., Wang, H. et al. Controlled synthesis of hierarchical CuS architectures by a recrystallization growth process in a microemulsion system. J Mater Sci 47, 4972–4980 (2012). https://doi.org/10.1007/s10853-012-6372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6372-8

Keywords

Navigation