Skip to main content
Log in

Microstructure and phase selection in supercooled copper alloys exhibiting metastable liquid miscibility gaps

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of both bulk supercooling and cooling rate on the microstructure and phase selection during solidification of Cu–Co, Cu–Co–Fe, and Cu–Nb alloys exhibiting metastable liquid miscibility gaps were investigated using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. Containerless electromagnetic levitation was used to achieve large bulk supercoolings in the specimens. Supercooling of these alloys below a certain temperature resulted in metastable separation of the melt into two liquids, a Cu-lean (Co, Co + Fe, or Nb enriched) melt (L1) and a Cu-rich melt (L2). Usually, the microstructure of the phase-separated alloys consisted of spherulites corresponding to one of the phase-separated liquids embedded in a matrix corresponding to the other. The microstructure and phase selection are found to depend on factors such as: alloy composition, supercooling level, whether the material was dropped before or after recalescence, and the cooling rate during solidification. The following results were observed: (1) solidification of metastable ε-Cu with enhanced Co (or Co + Fe, or Nb) solubility; (2) partitionless solidification of the L1 and L2 liquids; (3) spinodal decomposition of the supercooled liquid, and (4) secondary melt separation. The results are discussed and related to current solidification theories regarding solidification paths for the different conditions examined. The miscibility gap boundaries for the different alloys were determined and compared with those reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Froes FH (1995) In: Advanced synthesis of light metals, Korean journal of metals and materials conference. Hongik University, Seoul, p 28

  2. Jones H (1981) In: Herman H (ed) Treatise on materials science and technology, vol 20. Academic Press, New York, p 1

  3. Bardes BP, Flemings MC (1966) Trans AFS 74:406

    Google Scholar 

  4. Mehrabian R (1982) Int Metals Rev 27:185

    Article  CAS  Google Scholar 

  5. Munitz A, Elder SP, Abbaschian R (1992) Metall Trans A 23A:1817

    CAS  Google Scholar 

  6. Clyne TW (1983) Metall Trans B 15B:369

    Google Scholar 

  7. Miroshnichenko GP, Brekharya IS (1970) Fiz Metal Metalloved 664

  8. Munitz A (1987) Metall Trans B 18B:565

    Article  CAS  Google Scholar 

  9. Berkowitz BJ, Scattergood RO (1987) In: Kelly TF, Vander Sande JB (eds) Chemistry and physics of rapidly solidified materials. TMS-AIME, Warrendale, p 35

  10. Boettinger WJ, Oriel SR, Sekerka RF (1982) In: Kelly TF, Vander Sande JB (eds) Chemistry and physics of rapidly solidified materials. TMS-AIME, Warrendale, p 45

  11. Munitz A, Abbaschian R (1987) In: Collings EW, Koch CC (eds) Undercooled alloy phases. TMS-AIME, Warrenadle, p 23

  12. Das SK, Kear BH, Adam CM (1985) In: Flemings M, Cohen MC (eds) Rapidly solidified crystalline alloys. TMS-AIME, Warrendale, p 3

  13. Elder SP, Munitz A, Abbaschian R (1989) Mater Sci Forum 50:137

    Article  Google Scholar 

  14. Nakagawa Y (1958) Acta Metall 6:704

    Article  CAS  Google Scholar 

  15. Munitz A, Abbaschian R (1996) Met Mater Trans A 27:4049

    Article  Google Scholar 

  16. Munitz A, Abbaschian R (1998) J Mater Sci 33:3639. doi:10.1023/A:1004663530929

    Article  CAS  Google Scholar 

  17. Elder SP (1990) Ph.D. Dissertation University of Florida, Gainesville

  18. Kim DI, Abbaschian R (2000) J Phase Equilibria 21:1

    Article  Google Scholar 

  19. Bamberger M, Munitz A, Kaufman L (2002) CALPAD 26:375

    Article  CAS  Google Scholar 

  20. Munitz A, Bamberger M, Wannaparhun S, Abbaschian R (2006) J Mater Sci 41:2749. doi:10.1007/s10853-006-5598-8

    Article  CAS  Google Scholar 

  21. Munitz A, Bamberger M, Venkert A, Landau P, Abbaschian R (2009) J Mater Sci 44:64. doi:10.1007/s10853-008-3115-y

    Article  CAS  Google Scholar 

  22. PerepezkoJH, ShiaharaY, Paik JS, Flemings MC (1982) In: Mehrabian R (ed) Rapid solidification processing: principles and technologies III. NBS, Gaithersburg, p 28

  23. Walker JH (1961) In: St. Pierre GR (ed) Physical chemistry of process metallurgy. Interscience Publication, New York, p 845

  24. Munitz A, Abbaschian R (1986) In: Collings EW, Koch CC (eds) Undercooled alloy phases new orleans Louisiana. The Metallurgical Society of AIME, Louisiana, p 23

  25. Abbaschian GJ, Flemings MC (1983) Metall Trans A 14A:1147

    Google Scholar 

  26. Munitz A, Abbaschian R (1991) J Mater Sci 26:6458. doi:10.1007/BF02387830

    Article  CAS  Google Scholar 

  27. Robinson MB, Li D, Rathz TJ, Williams G (1999) J Mater Sci 34:3747. doi:10.1023/A:1004688313591

    Article  CAS  Google Scholar 

  28. Reed SJB (1977) In: Electron microprobe analysis. Cambridge University Pressto, Cambridge, p 175

  29. Klug HP, Alexander LE (1974) In: X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New York

  30. Wiles D, Young R (1981) J Appl Cryst 14:149

    Article  CAS  Google Scholar 

  31. Cullity BD (1977) In: Elements of X-ray diffraction. Addison-Wesley Publishing Company Inc., Boston, p 506

  32. Nishizawa T, Ishida K (1984) Bull Alloy Phase Diagr 5:161

    Article  CAS  Google Scholar 

  33. Porter DA, Easterling KE (1984) Phase transformation in metals and alloys. Van Nostrand Reinhold, New York, p 308

Download references

Acknowledgement

The authors thank Dr G. Kimmel for his technical assistance with the X-ray diffraction measurements and Mr. C. Cotler for the microstructural characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Munitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munitz, A., Venkert, A., Landau, P. et al. Microstructure and phase selection in supercooled copper alloys exhibiting metastable liquid miscibility gaps. J Mater Sci 47, 7955–7970 (2012). https://doi.org/10.1007/s10853-012-6354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6354-x

Keywords

Navigation