Skip to main content
Log in

Structural and chemical characterization of SnO2-based nanoparticles as electrode material in Li-ion batteries

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Improvement of long-term stability of electrode materials in Li-ion batteries requires a detailed understanding of influence of synthesis parameters on surface chemistry and on properties. Therefore, bare SnO2 and core/shell nanoparticles with SnO2 core and a hydrocarbon shell are synthesized in an Ar/20% O2 microwave plasma, deposited as porous nanoparticle films in situ on heated Ni-substrates, and finally assembled as anodes in Swagelok cells. In a comprehensive study, we investigate structure, particle size, chemistry, morphology, and water content of the nanoparticles using X-ray diffraction, transmission electron microscopy, specific surface area analysis, and coulometric water titration. The thicknesses of the nanoparticle films and their surface chemistry are investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. SnO2 nanoparticles are crystalline, with a tetragonal cassiterite structure. Primary particle sizes around 3 nm are reached for the bare SnO2 particles, 5–8 nm for the cores of the core/shell nanoparticles. A minimum microwave power of 900 W is necessary to synthesize SnO2 nanoparticles without precursor residuals as pristine SnO2 particles for the subsequent coating step. In the coating step increasing hydrocarbon content can be correlated with increasing carbon-precursor feeding rate. Water uptake, stemming either from the process, or due to atmospheric contamination, can successfully be reduced by a thermal treatment. The still remaining water is a function of specific surface area. Finally, bare SnO2 versus core/shell nanoparticles are compared regarding the influence of the shell on the electrochemical properties. The principal improved functionality of the developed anodes in Swagelok cells is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li N, Martin CR, Scrosati B (2001) J Power Sources 97–98:240

    Article  Google Scholar 

  2. Wang Y, Lee JY, Chen BH (2004) J Electrochem Soc 151(4):A563. doi:10.1149/1.1647571

    Article  CAS  Google Scholar 

  3. Wang Y, Lee JY (2005) J Power Sources 144(1):220

    Article  CAS  Google Scholar 

  4. Zhao Y, Zhou Q, Liu L, Xu J, Yan M, Jiang Z (2006) Electrochim Acta 51(13):2639

    Article  CAS  Google Scholar 

  5. Liang Y, Fan J, Xia X, Jia Z (2007) Mater Lett 61(22):4370. doi:10.1016/j.matlet.2007.02.008

    Article  CAS  Google Scholar 

  6. Aifantis KE, Brutti S, Hackney SA, Sarakonsri T, Scrosati B (2010) Electrochim Acta 55(18):5071. doi:10.1016/j.electacta.2010.03.083

    Article  CAS  Google Scholar 

  7. Gao M, Chen X, Pan H, Xiang L, Wu F, Liu Y (2010) Electrochim Acta 55(28):9067. doi:10.1016/j.electacta.2010.08.033

    Article  CAS  Google Scholar 

  8. Ochs R, Szabó DV, Schlabach S, Becker S, Indris S (2011) Phys Status Solidi A 208(2):471. doi:10.1002/pssa.201026652

    Article  CAS  Google Scholar 

  9. Ohzuku T, Iwakoshi Y, Sawai K (1993) J Electrochem Soc 140(9):2490. doi:10.1149/1.2220849

    Article  CAS  Google Scholar 

  10. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed 47(16):2930

    Article  CAS  Google Scholar 

  11. Centi G (2009) Europ J Inorg Chem 26:3851

    Article  Google Scholar 

  12. Chen Y-C, Chen J-M, Huang Y-H, Lee Y-R, Shih HC (2007) Surf Coat Technol 202(4–7):1313

    Article  CAS  Google Scholar 

  13. Yao J, Shen X, Wang B, Liu H, Wang G (2009) Electrochem Commun 11(10):1849

    Article  CAS  Google Scholar 

  14. Du Z, Yin X, Zhang M, Hao Q, Wang Y, Wang T (2010) Mater Lett 64(19):2076

    Article  CAS  Google Scholar 

  15. Qiao H, Zheng Z, Zhang L, Xiao L (2008) J Mater Sci 43(8):2778. doi:10.1007/s10853-008-2510-8

    Article  CAS  Google Scholar 

  16. Vollath D, Szabó DV (2006) J Nanopart Res 8(3–4):417. doi:10.1007/s11051-005-9014-0

    Article  CAS  Google Scholar 

  17. Schumacher B, Ochs R, Tröße H, Schlabach S, Bruns M, Szabó DV, Haußelt J (2007) Plasma Process Polym 4(S1):S865. doi:10.1002/ppap.200732101

    Article  Google Scholar 

  18. Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M (2008) Nano Lett 8(7):2012. doi:10.1021/nl8011566

    Article  CAS  Google Scholar 

  19. Marcinek M, Hardwick LJ, Zukowska GZ, Kostecki R (2010) Carbon 48(5):1552

    Article  CAS  Google Scholar 

  20. Moreno-Couranjou M, Monthioux M, Gonzalez-Aguilar J, Fulcheri L (2009) Carbon 47(10):2310

    Article  CAS  Google Scholar 

  21. Peter S, Günther M, Hauschild D, Grambole D, Richter F (2010) Vacuum 85(4):510. doi:10.1016/j.vacuum.2010.10.006

    Article  CAS  Google Scholar 

  22. Koprinarov N, Konstantinova M (2011) J Mater Sci 46(5):1494. doi:10.1007/s10853-010-4951-0

    Article  CAS  Google Scholar 

  23. Park M, Kang Y, Kim J, Wang G, Dou S, Liu H (2008) Carbon 46(1):35. doi:10.1016/j.carbon.2007.10.032

    Article  CAS  Google Scholar 

  24. Parry KL, Shard AG, Short RD, White RG, Whittle JD, Wright A (2006) Surf Interface Anal 38(11):1497. doi:10.1002/sia.2400

    Article  CAS  Google Scholar 

  25. Scofield JH (1976) J Electron Spectrosc Relat Phenom 8(2):129. doi:10.1016/0368-2048(76)80015-1

    Article  CAS  Google Scholar 

  26. Tanuma S, Powell CJ, Penn DR (1994) Surf Interface Anal 21(3):165. doi:10.1002/sia.740210302

    Article  CAS  Google Scholar 

  27. Schlabach S, Szabó DV, Vollath D, de la Presa P, Forker M (2007) J Alloy Compd 434:590. doi:10.1016/j.jallcom.2006.08.087

    Article  Google Scholar 

  28. Schlabach S, Szabó DV, Vollath D, Braun A, Clasen R (2004) Funct Nanomater Optoelectronics Other Appl 99–100:191

    Google Scholar 

  29. Vollath D, Szabó DV (2002) In: Choy K-L (ed) Innovative processing of films and nanocrystalline powders. Imperial College Press, London, p 219

    Chapter  Google Scholar 

  30. Brossmann U, Sagmeister M, Polt P, Kothleitner G, Letofsky-Papst I, Szabó DV, Würschum R (2007) Phys Status Solidi RRL 1(3):107. doi:10.1002/pssr.200701019

    Article  CAS  Google Scholar 

  31. Szabó DV, Schlabach S, Ochs R (2007) In: Gemming T, Hartmann U, Mestres P, Walther P (eds) Microscopy Conference 2007, Saarbrücken, Germany, 2007. Microscopy and Analysis. Cambridge University Press, vol 13, Supplement 3 p 430

  32. Fuchs M, Breitenstein D, Fartmann M, Grehl T, Kayser S, Koester R, Ochs R, Schlabach S, Szabó DV, Bruns M (2010) Surf Interface Anal 42(6–7):1131

    Article  CAS  Google Scholar 

  33. Vollath D, Szabó DV, Schlabach S (2004) J Nanopart Res 6(2–3):181

    Article  CAS  Google Scholar 

  34. Lamparth I, Szabó DV, Vollath D (2002) Macromol Symp 181:107

    Article  CAS  Google Scholar 

  35. Szabó DV, Lamparth I, Vollath D (2002) Macromol Symp 181:393

    Article  Google Scholar 

  36. Powell RA (1979) Appl Surf Sci 2:397

    CAS  Google Scholar 

  37. Hoflund GB, Corallo GR (1992) Phys Rev B 46(11):7110

    Article  CAS  Google Scholar 

  38. JCPDS 41-1445. The International Centre for Diffraction Data, Newton Square, PA, USA

  39. Yu KN, Xiong YH, Liu YL, Xiong CS (1997) Phys Rev B 55(4):2666

    Article  CAS  Google Scholar 

  40. Lock EH, Petrovykh DY, Mack P, Carney T, White RG, Walton SG, Fernsler RF (2010) Langmuir 26(11):8857. doi:10.1021/la9046337

    Article  CAS  Google Scholar 

  41. Stevens JS, Schroeder SLM (2009) Surf Interface Anal 41(6):453. doi:10.1002/sia.3047

    Article  CAS  Google Scholar 

  42. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) J Mater Chem 16(2):155

    Article  CAS  Google Scholar 

  43. Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L (2009) Nanotechnology 20(45):455602

    Article  Google Scholar 

  44. Moulder JF, Stickele WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photolelectron spectroscopy. Perkin Elmer Corp., Eden Prairie

    Google Scholar 

  45. Trouillet V, Tröße H, Bruns M, Nold E, White RG (2007) J Vac Sci Technol A 25(4):927. doi:10.1116/1.2731342

    Article  CAS  Google Scholar 

  46. Ma Y, Castro RHR, Zhou W, Navrotsky A (2011) J Mater Res 26(7):848. doi:10.1557/jmr.2010.97

    Article  CAS  Google Scholar 

  47. Mersmann A, Kind M, Stichlmair J (2005) Thermische Verfahrenstechnik, 2nd edn. Springer, Berlin

    Google Scholar 

  48. Liu HP, Long DH, Liu XJ, Qiao WM, Zhan L, Ling LC (2009) Electrochim Acta 54(24):5782. doi:10.1016/j.electacta.2009.05.030

    Article  CAS  Google Scholar 

  49. Hassoun J, Derrien G, Panero S, Scrosati B (2008) Adv Mater 20(16):3169. doi:10.1002/adma.200702928

    Article  CAS  Google Scholar 

  50. Mohamedi M, Lee S-J, Takahashi D, Nishizawa M, Itoh T, Uchida I (2001) Electrochim Acta 46(8):1161. doi:10.1016/s0013-4686(00)00702-7

    Article  CAS  Google Scholar 

  51. Demir-Cakan R, Hu Y-S, Antonietti M, Maier J, Titirici M-M (2008) Chem Mater 20(4):1227. doi:10.1021/cm7031288

    Article  CAS  Google Scholar 

  52. Deng D, Lee JY (2008) Chem Mater 20(5):1841. doi:10.1021/cm7030575

    Article  CAS  Google Scholar 

  53. Sun X, Liu J, Li Y (2006) Chem Mater 18(15):3486. doi:10.1021/cm052648m

    Article  CAS  Google Scholar 

  54. Kim C, Noh M, Choi M, Cho J, Park B (2005) Chem Mater 17(12):3297. doi:10.1021/cm048003o

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the German Ministry for Education and Research, project “Battery Competence Consortium South—Electrochemistry for Electromobility” under contract number 03KP801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothée Vinga Szabó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabó, D.V., Kilibarda, G., Schlabach, S. et al. Structural and chemical characterization of SnO2-based nanoparticles as electrode material in Li-ion batteries. J Mater Sci 47, 4383–4391 (2012). https://doi.org/10.1007/s10853-012-6292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6292-7

Keywords

Navigation