Skip to main content
Log in

Modification of vinyl ester and vinyl ester–urethane resin-based bulk molding compounds (BMC) with acrylated epoxidized soybean and linseed oils

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Acrylated epoxidized soybean and linseed oils of different characteristics were incorporated in the absence and presence of polymeric methylene diphenyl isocyanate (PMDI) in a vinyl ester (VE) resin-based bulk molding compound (BMC) up to 15 wt% (with respect to VE resin). The thermal, thermo-mechanical, static fracture mechanical, dynamic impact (Charpy), and thermal degradation properties of the BMC compounds were determined. With increasing amount of functionalized plant oils the glass transition temperature (T g) of the matrix, the stiffness (E modulus) and Charpy impact strength of the BMCs decreased. The static fracture toughness was slightly increased and the fracture energy remained unaffected by the modification with increasing amount of oil. Additional crosslinking of VE, induced by PMDI, markedly enhanced the T g but yielded a large drop in the glassy modulus. This finding was traced to resin dilution and to unfavored PMDI/kaolin interactions triggered by the water content of the latter. The thermal degradation of the BMCs was less affected, however, their degradation started earlier for the modifications either with functionalized plant oil or PMDI. Dilution of VE-based BMCs with acrylated epoxidized plant oils requires reworking of the corresponding recipes to keep the property degradation limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Auad ML, Proia M, Borrajo J, Aranguren MI (2002) J Mater Sci 37:4117. doi:10.1023/A:1020031701950

    Article  CAS  Google Scholar 

  2. Liang G, Zuo R, Lu T, Wang J (2005) J Mater Sci 40:2089. doi:10.1007/s10853-005-1242-2

    Article  CAS  Google Scholar 

  3. Karger-Kocsis J, Gryshchuk O, Jost N (2003) J Appl Polym Sci 88:2124. doi:10.1002/app.11946

    Article  CAS  Google Scholar 

  4. Karger-Kocsis J, Gryshchuk O, Schmitt S (2003) J Mater Sci 38:413. doi:10.1023/A:1021855228253

    Article  CAS  Google Scholar 

  5. Szabó JS, Gryshchuk O, Karger-Kocsis J (2003) J Mater Sci Lett 22:1141. doi:10.1023/A:1025175027424

    Article  Google Scholar 

  6. Rosso P, Fiedler B, Friedrich K, Schulte K (2006) J Mater Sci 41:383. doi:10.1007/s10853-005-2619-y

    Article  CAS  Google Scholar 

  7. Karger-Kocsis J, Gryshchuk O (2006) J Appl Polym Sci 100:4012. doi:10.1002/app.23220

    Article  CAS  Google Scholar 

  8. Gryshchuk O, Jost N, Karger-Kocsis J (2002) Polymer 43:4763. doi:10.1016/S0032-3861(02)00314-2

    Article  CAS  Google Scholar 

  9. Grishchuk S, Karger-Kocsis J (2011) Express Polym Lett 5:2. doi:10.3144/expresspolymlett.2011.2

    Article  CAS  Google Scholar 

  10. Fu L, Yang L, Dai C, Zhao C, Ma L (2010) J Appl Polym Sci 117:2220. doi:10.1002/app.32126

    CAS  Google Scholar 

  11. Li F, Larock RC (2002) J Appl Polym Sci 84:1533. doi:10.1002/app.10493

    Article  CAS  Google Scholar 

  12. Lu J, Khot S, Wool RP (2005) Polymer 46:71. doi:10.1016/j.polymer.2004.10.060

    Article  CAS  Google Scholar 

  13. Lu J, Wool RP (2006) J Appl Polym Sci 99:2481. doi:10.1002/app.22843

    Article  CAS  Google Scholar 

  14. Grishchuk S, Leanza R, Kirchner P, Karger-Kocsis J (2011) J Reinf Plast Compos 30:1455. doi:10.1177/0731684411421541

    Article  CAS  Google Scholar 

  15. Topić M, Katović Z (1994) Polymer 35:5536. doi:10.1016/S0032-3861(05)80020-5

    Article  Google Scholar 

  16. Karger-Kocsis J, Friedrich K (1987) J Mater Sci 22:947. doi:10.1007/BF01103535

    Article  CAS  Google Scholar 

  17. Karger-Kocsis J (1989) In: Friedrich K (ed) Application of fracture mechanics to composite materials. Amsterdam, Elsevier, p 189

    Google Scholar 

Download references

Acknowledgements

This study was performed in the framework of a bilateral cooperation program between Germany (DAAD) and Hungary (MöB). The authors are thankful to Dr. P. Kirchner (Polynt GmbH, Miehlen, Germany) and to Dr. R. Leanza (Polynt S.p.A., Scanzorosciate (BG), Italy) for providing the BMC compound.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Karger-Kocsis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grishchuk, S., Karger-Kocsis, J. Modification of vinyl ester and vinyl ester–urethane resin-based bulk molding compounds (BMC) with acrylated epoxidized soybean and linseed oils. J Mater Sci 47, 3391–3399 (2012). https://doi.org/10.1007/s10853-011-6186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6186-0

Keywords

Navigation