Skip to main content
Log in

Isothermal crystallization kinetics of glass fiber and mineral-filled polyamide 6 composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, isothermal crystallization kinetics of polyamide 6 (PA6) composites reinforced with surface-treated glass fiber (GF) and natural, clay-type mineral (MN) were investigated by differential scanning calorimetry method in the presence and absence of a nucleating agent (NA). Microstructural features of the composites and interfacial interactions between filler and polyamide phases were also quantified by rheological measurements. The kinetic parameters for the isothermal melt-crystallization process of the samples were determined with the Avrami and Lauritzen–Hoffman models. The crystallization activation energies were determined by the Arrhenius method. It was found that the both fillers yielded a significant increase in the storage modulus of PA6. Kinetic calculations showed that the MN has a more pronounced acceleration effect on the crystallization rate of PA6 than the GF. Introduction of a small amount of NA significantly favored the isothermal crystallization rate of GF-reinforced PA6 but did not accelerate that of MN-reinforced one. Based on the results, it has been highlighted that PA6 composites reinforced with surface-treated GFs and including a small amount of clay-like mineral as a cheap and easy-accessible minor filler could yield the best performance for the injection-molded PA6 parts because the GF enhances the mechanical properties and the clay-like mineral accelerates the crystallization rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Miyasaka K, Ishikawa K (1968) J Polym Sci A 6:1317

    CAS  Google Scholar 

  2. Kyotani M, Mitsihashi S (1972) J Polym Sci A 10:1497

    CAS  Google Scholar 

  3. Matyi RJ, Cryst B Jr (1978) J Polym Sci Polym Phys Ed 16:1329

    Article  CAS  Google Scholar 

  4. Ellis TS (2003) Polymer 44:6443

    Article  CAS  Google Scholar 

  5. Liu TX, Phang IY, Shen L, Chow SY, Zhang WD (2004) Macromolecules 37:7214

    Article  CAS  Google Scholar 

  6. Wang B, Sun G, Liu J, He X, Li J (2006) J Appl Polym Sci 100:3794

    Article  CAS  Google Scholar 

  7. Li J, Fang Z, Zhu Y, Tong L, Gu A, Liu F (2007) J Appl Polym Sci 105:3531

    Article  CAS  Google Scholar 

  8. Lin SY, Chen EC, Liu KY, Wu TM (2009) Polym Eng Sci 49:2447

    Article  CAS  Google Scholar 

  9. Yang Z, Huang S, Liu T (2011) J Appl Polym Sci 122:551

    Article  CAS  Google Scholar 

  10. Liu Y, Yang G (2010) Thermochim Acta 500:13

    Article  CAS  Google Scholar 

  11. Weng W, Chen G, Wu D (2003) Polymer 44:8119

    Article  CAS  Google Scholar 

  12. Kang X, Suqin HS, Chengshen ZC, Wang L, Lü L, Guo J (2005) J Appl Polym Sci 95:756

    Article  CAS  Google Scholar 

  13. Fornes TD, Paul DR (2003) Polymer 44:3945

    Article  CAS  Google Scholar 

  14. Li Y, Shimizu H (2006) J Polym Sci B 44:284

    Article  CAS  Google Scholar 

  15. Hedicke K, Wittich H, Mehler C, Gruber F, Altstädt V (2006) Compos Sci Technol 66:571

    Article  CAS  Google Scholar 

  16. Guo B, Zou Q, Lei Y, Du M, Liu M, Jia D (2009) Thermochim Acta 484:48

    Article  CAS  Google Scholar 

  17. Göschel U, Lutz W, Davidson NC (2007) Compos Sci Technol 67:2606

    Article  Google Scholar 

  18. Kasgoz H, Durmus A, Kasgoz A (2008) Polym Adv Technol 19:213

    Article  CAS  Google Scholar 

  19. Illers KH (1978) Makromol Chem 179:497

    Article  CAS  Google Scholar 

  20. Durmus A, Kasgoz A, Macosko CW (2007) Polymer 48(15):4492

    Article  CAS  Google Scholar 

  21. Avrami M (1939) J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  22. Hoffman DJ, Davis GT, Lauritzen JI (1976) In: Hannary NB (ed) Treatise on solid state chemistry: crystalline and non-crystalline solids. Plenum, New York

    Google Scholar 

  23. Privalko VP, Kawai T, Lipatov YS (1979) Colloid Polym Sci 257:841

    Article  CAS  Google Scholar 

  24. Lauritzen JI, Hoffman JD (1973) J Appl Phys 44:4340

    Article  CAS  Google Scholar 

  25. Arimoto H, Ishibashi M, Hirai M, Chatani Y (1965) J Polym Sci A 3:317

    Article  CAS  Google Scholar 

  26. Wang B, Wang W, Wang H, Hu G (2010) J Polym Res 17:429

    Article  CAS  Google Scholar 

  27. Cebe P, Hong SD (1986) Polymer 27:1183

    Article  CAS  Google Scholar 

  28. Liu MY, Zhao OX, Wang YD, Zhang CG, Mo ZS, Cao SK (2003) Polymer 44:2537

    Article  CAS  Google Scholar 

  29. Zhang Y, Zhang Y, Liu S, Huang A, Chi Z, Xu J, Economy J (2011) J Appl Polym Sci 120:1885

    Article  CAS  Google Scholar 

  30. Wu B, Gong Y, Yang G (2011) J Mater Sci 46:5184. doi:10.1007/s10853-011-5452-5

    Article  CAS  Google Scholar 

  31. Medellin-Rodriguez FJ, Larios-Lopez L, Zapata-Espinoza A, Davalos-Montoya O, Phillips PJ, Lin PS (2004) Macromolecules 37:1799

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Durmus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şanlı, S., Durmus, A. & Ercan, N. Isothermal crystallization kinetics of glass fiber and mineral-filled polyamide 6 composites. J Mater Sci 47, 3052–3063 (2012). https://doi.org/10.1007/s10853-011-6137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6137-9

Keywords

Navigation