Skip to main content

Advertisement

Log in

A new statistical framework for the determination of safe creep life using the theta projection technique

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article a new estimation framework is put forward for the well-known theta projection technique which enables, for the first time, levels of confidence to be associated with the creep property predictions made using this technique. The predictions made from the resulting model are in the form of distributions, which is a substantial advance on existing life assessment methodologies used in high-temperature applications such as the disks and blades used in aero engines. This additional information should prove invaluable for questions related to the issues of possible life extension. When applied to data on Ti.6.2.4.6, accurate interpolations and extrapolations could be made of the actual distribution of the minimum creep rate, which in combination with the Monkman–Grant relation, also enabled accurate predictions to be made for the time to failure. For example, when extrapolating to a stress of 480 MPa, the time to failure was predicted to follow a non-normal distribution with a median time of 3450 h and a 95% confidence interval of 3250–3800 h. The single experimental data point available at this stress was consistent with such an extrapolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Larson FR, Miller J (1952) Trans ASME 174(5)

  2. Evans RW, Wilshire B (1999) Introduction to creep, Appendix A. The Institute of Materials, Bournemouth

    Google Scholar 

  3. Evans RW, Wilshire B (1984) Creep of metals and alloys. The Institute of Metals, London

    Google Scholar 

  4. Evans RW, Willis MR, Wilshire B, Holdsworth S, Senior B, Fleming A, Spindler M, Williams JA (1993) In: Proceedings of the 5th international conference on creep and fracture of engineering materials and structures, University College Swansea, Swansea, p 633

  5. Brown SGR, Evans RW, Wilshire B (1986) Mater Sci Eng 84(1–2):147

    CAS  Google Scholar 

  6. Evans RW, Hull RJ (1996) J Mater Proc Technol 56(1–4):492

    Article  Google Scholar 

  7. Evans M (2001) J Mater Sci 36:2875. doi:10.1023/A:1017946218860

    Article  CAS  Google Scholar 

  8. Evans RW (2001) Mater Sci Technol 17(5):487

    CAS  Google Scholar 

  9. Evans RW (2000) Mater Sci Technol 16(1):6

    Article  CAS  Google Scholar 

  10. Evans RW (1989) Mater Sci Technol 5(7):699

    Google Scholar 

  11. Penny RK, Marriott DL (1995) Design for creep. Chapman & Hall, London

    Book  Google Scholar 

  12. Evans M, Ward AR (2000) Mater Sci Technol 16(10):1149

    CAS  Google Scholar 

  13. Yokoi S (ed) National Institute for Materials Science, various creep data sheets, Tokyo

  14. ECCC Recommendations. In: Bullough CK, Merckling G (eds) Data exchange and collation, vol 4, Holdsworth

  15. Goldstein H (2003) Multilevel statistical models, 3rd edition, appendix to chapter 2. Wiley, London

    Google Scholar 

  16. Laird NM, Ware JH (1982) Biometrics 38:963

    Article  CAS  Google Scholar 

  17. Lindstrom MJ, Bates DM (1988) J Am Stat Assoc 83:1014

    Article  Google Scholar 

  18. Maddala GS, Li H, Trost RP, Joutz F (1997) J Bus Econ Stat 15:90

    Article  Google Scholar 

  19. Hougaard PP (2000) Analysis of multivariate survival data. Springer-Verlag, New York

    Book  Google Scholar 

  20. Lawless JF (1982) Statistical models and methods for lifetime data, Chapter 1. Wiley, New York

    Google Scholar 

  21. Abramowitz M, Stegun IA (eds) Handbook of mathematical functions. Dover, New York

  22. Monkman FC, Grant NJ (1963) In: Mullendore AW, Grant NJ (eds) Deformation and fracture at elevated temperature. MIT Press, Boston

    Google Scholar 

  23. Bourgeois M, Feaugas X, De Mestral F, Chauveau T, Cla M (1995) In: Proceedings of the 8th world conference on titanium, International Convention Centre, Birmingham

  24. Bourgeois MM, Feaugas X, De Mestral F, Chauveau T, Cla M (1996) Rev Metall Cshiers Inf Tech 93(12):1521

    CAS  Google Scholar 

  25. Bartlett MS, Kendall DG (1946) J R Stat Soc

  26. Prentice SRL (1975) Biometrika 61:539

    Article  Google Scholar 

  27. Greene WH (2008) Econometric analysis, 6th edn. New Jersey, Prentice Hall

    Google Scholar 

  28. Box GEP, Muller ME (1958) Annal Math Stat 29:610

    Article  Google Scholar 

  29. Microsoft Excel: Microsoft Office (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Evans.

Appendix

Appendix

The modified theta projection method takes the form given by Eq. 6a.

$$ \begin{gathered} \varepsilon_{ij} - \rho \varepsilon_{ij - 1} = {\user1{AF}}_{1} {\kern 1pt} \Uptheta_{1i} (P_{ij} - \rho P_{ij - 1} ) + {\user1{AF}}_{3} {\kern 1pt} \Uptheta_{3i} (T_{ij} - \rho T_{ij - 1} ) + \eta_{i} u_{ij}^{*}\quad {\text{with}}\quad u_{ij}^{*} = {{u_{ij} } \mathord{\left/ {\vphantom {{u_{ij} } {\eta_{i} }}} \right. \kern-\nulldelimiterspace} {\eta_{i} }} \hfill \\ v_{ij \, } = \rho v_{ij - 1} + u_{ij} ,\,P_{ij} = (1 - {\text{e}}^{{ - {\user1{AF}}_{2} \Uptheta_{2i} t_{ij} }} ),\,P_{ij - 1} = (1 - {\text{e}}^{{ - \Uptheta_{2i} t_{ij - 1} }} ),\,T_{ij} = ({\text{e}}^{{{\user1{AF}}_{4} {\kern 1pt} \Uptheta_{4i} t_{ij} }} - 1),\,T_{ij - 1} = ({\text{e}}^{{\Uptheta_{4i} t_{ij - 1} }} - 1) \hfill \\ \end{gathered} $$
(7)

with ρ fixed at unity and with the \({\user1{AF}}_{h}\) defined by Eq. 6b. The probability density function for the change in consecutive strain measurements made on specimen i is given by

$$ f\left( {\varepsilon_{ij} - \rho \varepsilon_{ij - 1} } \right) = \frac{{\lambda^{\lambda - 0.5} }}{{\eta_{i} \Upgamma (\lambda )}}{ \exp }\left[ {\sqrt \lambda \left\{ {u_{ij}^{*} + D} \right\} - \lambda { \exp }\left( {\frac{{u_{ij}^{*} + D}}{\sqrt \lambda }} \right)} \right] $$
(8)

where u * ij is defined by Eq. (7). This type of distribution was first put forward by Bartlett and Kendall [25] and re parameterised by Prentice [26] to improve stability in estimation. Given ρ = 1, the log likelihood for the n i values of \( f\left( {\varepsilon_{ij} - \rho \varepsilon_{ij - 1} } \right) \) made on specimen i, conditional on Θ1i –Θ4i and γ1 to γ4 is then given by

$$ { \ln }\left( {L_{i} |\Uptheta_{li} - \Uptheta_{4i} ,\gamma_{1} - \gamma_{4} ,\eta_{i} } \right) = \sum\limits_{j = 1}^{{n_{i} }} {\left\{ {(\lambda - 0.5)\ln (\lambda ) - \ln \Upgamma (\lambda ) - \ln (\eta_{i} ) + \sqrt \lambda \left( {u_{ij}^{*} + D} \right) - \lambda e^{{\left( {D + u_{ij}^{*} } \right)/\sqrt \lambda }} } \right\}} $$
(9)

The log likelihood for all i units is then

$$ { \ln }(L) = \sum\limits_{i = 1}^{m} {\ln \left( {L_{i} |\Uptheta_{1i} - \Uptheta_{4i} ,\gamma_{1} - \gamma_{4} ,\eta_{i} } \right)} = \sum\limits_{i = 1}^{m} {\sum\limits_{j = 1}^{{n_{i} }} {\left\{ \begin{gathered} (\lambda - 0.5)\ln (\lambda ) - \ln \Upgamma (\lambda ) - \ln (\eta_{i} ) \hfill \\ + \sqrt \lambda \left( {u_{ij}^{*} + D} \right) - \lambda {\text{e}}^{{\left( {D + u_{ij}^{*} } \right)/\sqrt \lambda }} \hfill \\ \end{gathered} \right\}} } $$
(10)

where there are m test specimens. In principle this log likelihood could be maximised with respect to Θ1i –Θ4i , γ1 to γ4, and η i . However, there are two problems with this approach. First, the variance–covariance matrix Σ and the mean matrix μ are absent from this log likelihood and so cannot be estimated in this way. This problem can be overcome by specifying the random nature of Θ1i to Θ4i and η i

$$ \Uptheta_{{ 1 {\text{i}}}} = \mu_{\Uptheta 1} + {\text{z}}_{{ 1 {\text{i}}}} ;\quad \Uptheta_{{ 2 {\text{i}}}} = \mu_{\Uptheta 2} + {\text{z}}_{{ 2 {\text{i}}}} ;\quad \Uptheta_{{ 3 {\text{i}}}} = \mu_{\Uptheta 3} + {\text{z}}_{{ 3 {\text{i}}}} ;\quad \Uptheta_{{ 4 {\text{i}}}} = \mu_{\Uptheta 4} + {\text{z}}_{{ 4 {\text{i}}}} ;\quad \eta_{\text{i}} = \mu_{\eta } + {\text{z}}_{{ 5 {\text{i}}}} $$
(11)

where μΘ1 is the average of all the Θ1i values through to μΘ4 which is the average of all the Θ4i values and μη is the average of all the η i values . Further, z1i to z5i are assumed to follow a joint normal distribution with a mean vector of zero and variance–covariance matrix given by Σ, with the restriction that the Θ h and η are independent of each other. Further, z 1i to z 5i can calculated from standard normal variates in the following way

$$ \begin{gathered} {\text{z}}_{{ 1 {\text{i}}}} = \delta_{\Uptheta 1} {\text{w}}_{{ 1 {\text{i}}}} ;\quad {\text{z}}_{{ 2 {\text{i}}}} = \delta_{\Uptheta 12} {\text{w}}_{{ 1 {\text{i}}}} + \delta_{\Uptheta 2} {\text{w}}_{{ 2 {\text{i}}}} ;\quad {\text{z}}_{{ 3 {\text{i}}}} = \delta_{\Uptheta 13} {\text{w}}_{{ 1 {\text{i}}}} + \delta_{\Uptheta 23} {\text{w}}_{{ 2 {\text{i}}}} + \delta_{\Uptheta 3} {\text{w}}_{{ 3 {\text{i}}}} \hfill \\ {\text{z}}_{{ 4 {\text{i}}}} = \delta_{\Uptheta 14} {\text{w}}_{{ 1 {\text{i}}}} + \delta_{\Uptheta 24} {\text{w}}_{{ 2 {\text{i}}}} + \delta_{\Uptheta 34} {\text{w}}_{{ 3 {\text{i}}}} + \delta_{\Uptheta 4} {\text{w}}_{{ 4 {\text{i}}}} ;\quad {\text{z}}_{{ 5 {\text{i}}}} = \delta_{\eta } {\text{w}}_{{5{\text{i}}}} \quad \left( {{\text{i }} = {\text{ 1 to m}}} \right) \hfill \\ \end{gathered} $$
(12)

where w 1i to w 5i are standard normal variates, i.e., variables that follow independent normal distributions with means of zero and variances of 1. Further, these new delta values are related to the variance–covariance matrix Σ as follows

$$ \Uplambda = \left[ {\begin{array}{*{20}c} {\delta_{\Uptheta 1}^{{}} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {\delta_{\Uptheta 12}^{{}} } & {\delta_{\Uptheta 2}^{{}} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {\delta_{\Uptheta 13}^{{}} } & {\delta_{\Uptheta 23}^{{}} } & {\delta_{\Uptheta 3}^{{}} } & 0 & 0 & 0 & 0 & 0 & 0 \\ {\delta_{\Uptheta 14}^{{}} } & {\delta_{\Uptheta 24}^{{}} } & {\delta_{\Uptheta 34}^{{}} } & {\delta_{\Uptheta 4}^{{}} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\delta_{\eta }^{{}} } & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right]\quad {\text{with }}\Uplambda \Uplambda^{T} = \Upsigma $$
(13)

The superscript T in Eq. 13 stands for transpose so that Λ is a Cholesky decomposition of Σ.

The basic steps involved in maximising this resulting log likelihood have been summarised by Greene [27] as follows:

  1. 1.

    Obtain at random 5 draws from the standard normal distribution using the well known Box-Muller [28] method. These values then quantify w 1i to w 5i in Eq. 12, for i = 1.

  2. 2.

    Repeat steps one above m times to obtain values for w 12 to w 52 through to w 1m to w 5m .

  3. 3.

    Choose, at random, starting values for all the parameters in Λ of Eq. 13.

  4. 4.

    Insert the values obtained in steps 2 to and 3 into Eq. 12 to obtain values for z 1i to z 5i for i = 1 to m.

  5. 5.

    Choose, at random, starting values μΘ1 to μΘ4, μη and all the γ parameters in Eq. 6b. Insert these, together with the z 1i to z 5i values obtained in step 4 above into Eq. 11 to obtain values for Θ1i to Θ4i and η i (for i = 1, m).

  6. 6.

    Insert the values obtained for Θ1i to Θ4i , η i and γ1 to γ4 from step 5 above into Eq. 7 to calculate values for u * ij (using ρ = 1). Then insert all these u * ij values into Eq. 10 to obtain a numeric value for the log likelihood given a value for λ.

  7. 7.

    Then run a standard numerical optimisation procedure to maximise ln(L) with respect to μΘ1 to μΘ4, μη, γ1 to γ4 and the parameters in Λ. (Λ can then be converted to Σ using Eq. 13).

  8. 8.

    Finally, steps 1–7 are then repeated R times yielding R values for μΘ1 to μΘ4, μη, γ1 to γ4 and the parameters in Λ. The average of these R values can be taken as the simulated maximum likelihood estimates for these parameters, and the standard deviation in these R values as an estimate of their standard error. The maximised log likelihood is then given by the average of the R maximised log likelihood values, \( \ln (\overline{L} ) \)

This estimation procedure can be repeated using different values for λ, and the value for λ that maximises \( \ln (\overline{L} ) \) is chosen as the correct value for λ. This is quite a straightforward procedure in practice because obtaining random draws from a standard normal distribution is easily implemented within popular and commercially available software packages such as Microsoft Excel [29]. In this package the Normsinv (Rand()) function is used to obtain a value at random from this distribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, M. A new statistical framework for the determination of safe creep life using the theta projection technique. J Mater Sci 47, 2770–2781 (2012). https://doi.org/10.1007/s10853-011-6106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6106-3

Keywords

Navigation