Skip to main content

Advertisement

Log in

Performance of epoxy filled with nano- and micro-sized Magnesium hydroxide

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnesium hydroxide (MDH) particles are often used as fillers to improve the flame retardancy of polymers. However, achieving the balance between the enhanced fire resistance and reduced mechanical properties, especially toughness, is still a challenge to the composite community. In this study, the effect of the particle size and silane surface modification of MDH particles on the flame retardant, thermal, and mechanical properties of epoxy was studied. Both nano- and micro-sized MDH particles were modified by a silanization reaction with γ-aminopropyltrietoxysilane in an aqueous solution and filled into epoxy matrix by a high-shear mixer and a three-roll mill. Results show that nano-MDH filled epoxy composites yielded better mechanical properties than their micro-MDH filled counterparts. Furthermore, the adhesion between nano-sized MDH and the matrix was improved by the silane surface modification. When comparing the flame retardant properties, enhancements in heat release rates and total heat released were observed for MDH filled epoxy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ratna D (2009) In: Handbook of thermoset resins, vol 180–181. Chapter 3. iSmithers, Shropshire, p 155

  2. Kotsilkova R (2007) Thermoset nanocomposites for engineering applications. Chapter 6. Smithers Rapra Technology, Shropshire, p 249

    Google Scholar 

  3. Levchik S, Piotrowski A, Weil E, Yao Q (2005) Polym Degrad Stabil 88:57

    Article  CAS  Google Scholar 

  4. Darnerud PO (2003) Environ Int 29:841

    Article  CAS  Google Scholar 

  5. Grand AF, Wilkie CA (2000) Fire retardancy of polymeric materials. Chapter 9. Marcel Dekker Inc., New York, p 286

    Google Scholar 

  6. Murphy J (2001) Additives for plastics handbook. Chapter 10. Elsevier Advanced Technology, Oxford, p 116

    Google Scholar 

  7. Wypych G (2000) In: Handbook of fillers—a definitive user’s guide and databook. Chapter 2. 92–94. ChemTech Publishing, Toronto, p 22

  8. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta J-M, Ph Dubois (2009) Mat Sci Eng R 63:100

    Article  Google Scholar 

  9. Zhang Q, Tian M, Wu Y, Lin G, Zhang L (2004) J Appl Polym Sci 94:2341

    Article  CAS  Google Scholar 

  10. Qiu L, Xie R, Ding P, Qu B (2003) Compos Struct 62:391

    Article  Google Scholar 

  11. Patil CB, Kapadi UR, Hundiwale DC, Mahulikar PP (2008) Polym-Plast Technol 47:1174

    Article  CAS  Google Scholar 

  12. Ito N, Yoden H (2005) J Netw Polym 26:147

    Google Scholar 

  13. Martins M, Pereira CMC (2009) Solid State Phenom 151:72

    Article  CAS  Google Scholar 

  14. Metin D, Tihminlioğlu F, Balköse D, Ülkü S (2004) Compos Part A-Appl S 35:23

    Article  Google Scholar 

  15. Arkles B (2006) Silane Coupling Agents: Connecting Across Boundaries. Gelest Inc. http://www.gelest.com/literature.asp. Accessed 5 Apr 2011

  16. Lejeune A (2004) Silanes in Particulates Coupling and Surface Priming, GE Coatings Additives

  17. Schilde C, Nolte H, Arlt C, Kwade A (2010) Compos Sci Technol 70:657

    Article  CAS  Google Scholar 

  18. Yasmin A, Luo JJ, Abot JL, Daniel IM (2006) Compos Sci Technol 66:2415

    Article  CAS  Google Scholar 

  19. Yasmin A, Abot JL, Daniel IM (2003) Scr Mater 49:81

    Article  CAS  Google Scholar 

  20. Sun Y, Zhang Z, Wong CP (2005) J Colloid Interf Sci 292:436

    Article  CAS  Google Scholar 

  21. Plueddemann EP (1991) Silane coupling agents. Chapter 7. Plenium Press, New York, p 172

    Google Scholar 

  22. Radford KC (1971) J Mater Sci 6:1286. doi:10.1007/BF00552042

    Article  CAS  Google Scholar 

  23. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Compos Part B Eng 39:933

    Article  Google Scholar 

  24. Chiu H-T, Cheng M-F (2006) J Appl Polym Sci 101:3381

    Article  CAS  Google Scholar 

  25. Wetzel B, Haupert F, Zhang MQ (2003) Compos Sci Technol 63:2055

    Article  CAS  Google Scholar 

  26. Li H, Zhang Z, Ma X, Hu M, Wang X, Fan P (2007) Surf Coat Tech 201:5269

    Article  CAS  Google Scholar 

  27. Lam C-K, Cheung H-Y, Lau K-T, Zhou L-M, Ho M-W, Hui D (2005) Compos Part B Eng 36:263

    Article  Google Scholar 

  28. Ye L, Wu Q, Qu B (2009) Polym Degrad Stabil 94:751

    Article  CAS  Google Scholar 

  29. Fu X, Zhang C, Liu T, Liang R, Wang B (2010) Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites. Nanotechnology. doi:10.1088/0957-4484/21/23/235701

Download references

Acknowledgements

The authors wish to thank the Finnish Funding Agency for Technology and Innovation and the Ministry of Science and Technology of China (Grant No. 2008DFA51220) for their joint financial support. Mrs. Sinikka Pohjonen, Mr. Mikko Salonen, and Mr. Antti Nikkola are also gratefully acknowledged for their help in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reija Suihkonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suihkonen, R., Nevalainen, K., Orell, O. et al. Performance of epoxy filled with nano- and micro-sized Magnesium hydroxide. J Mater Sci 47, 1480–1488 (2012). https://doi.org/10.1007/s10853-011-5933-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5933-6

Keywords

Profiles

  1. Longcheng Tang