Skip to main content
Log in

Surface plasma resonance spectra of Au nanoparticles formed from dewetted thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We investigated surface plasma resonance (SPR) properties of gold (Au) nanoparticles formed by step-by-step thermal annealing of Au films deposited onto substrates. We found that the averaged sizes of the Au particles formed in the annealing process depend on the initial thicknesses of the films. Using the geometric parameters extracted from the images of Au particles, the optical transmission spectra measured can be completely described in terms of SPR in the particles. The results suggest that annealing of Au films can be a simple and effective approach for producing Au nanoparticles with desired optical transmission properties, and the approach can be easily integrated into thin film fabrication processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag, Berlin

    Google Scholar 

  2. Bohren CF (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  3. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, springer series in material science, vol 25. Springer-Verlag, Berlin

    Google Scholar 

  4. Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Nat Mater 3:9

    Article  Google Scholar 

  5. Okamoto K, Kawakami Y (2009) IEEE J Sel Top Quantum Electron 15:1199

    Article  CAS  Google Scholar 

  6. Zhao HP, Zhang J, Liu GY, Tansub N (2011) Appl Phys Lett 98:151115

    Article  Google Scholar 

  7. Jacobson MZ, Delucchi MA (2009) Sci Am 301(5):58

    Article  CAS  Google Scholar 

  8. Green MA (2007) J Mater Sci Mater Electron 18:S15

    Article  CAS  Google Scholar 

  9. Atwater HA, Polman A (2010) Nat Mater 9:205

    Article  CAS  Google Scholar 

  10. Pillai S, Catchpole KR, Trupke T, Green MA (2007) J Appl Phys 101:093105

    Article  Google Scholar 

  11. Catchpole KR, Polman A (2008) Opt Express 26:21793

    Article  Google Scholar 

  12. Mertz J (2000) J Opt Soc Am B 17:1906

    Article  CAS  Google Scholar 

  13. Derkacs D, Lim SH, Matheu P, Mar W, Yu ET (2006) Appl Phys Lett 89:093103

    Article  Google Scholar 

  14. Beck FJ, Polman A, Catchpole KR (2009) J Appl Phys 105:114310

    Article  Google Scholar 

  15. Catchpole KR, Polman A (2008) Appl Phys Lett 93:191113

    Article  Google Scholar 

  16. Yeh DM, Huang CF, Chen CY, Lu YC, Yang CC (2008) Nanotechnology 19:345201

    Article  Google Scholar 

  17. Henson J, Bhattacharyya A, Moustakas TD, Paiella R (2008) J Opt Soc Am B 25:8

    Article  Google Scholar 

  18. Zhao HP, Liu GY, Tansu N (2010) Appl Phys Lett 97:131114

    Article  Google Scholar 

  19. Zhang J, Zhao HP, Tansu N (2011) Appl Phys Lett 98:171111

    Article  Google Scholar 

  20. Liao CT, Tsai MC, Liou BT, Yen SH, Kuo YK (2010) J Appl Phys 108:063107

    Article  Google Scholar 

  21. Wu YR, Lin YY, Huang HH, Singh J (2009) J Appl Phys 105:013117

    Article  Google Scholar 

  22. Liu G, Zhao H, Zhang J, Park JH, Mawst LJ, Tansu N (2011) Nanoscale Res Lett 6(1):342

    Article  CAS  Google Scholar 

  23. Grigorenko AN, Geim AK, Gleeson HF, Zhang Y, Firsov AA, Khrushchev IY, Petrovic J (2005) Nature 438:335

    Article  CAS  Google Scholar 

  24. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) J Phys Chem B 104:10549

    Article  CAS  Google Scholar 

  25. Xiong Y, McLellan JM, Chen Yin JY, Li ZY, Xia Y (2005) J Am Chem Soc 127:17118

    Article  CAS  Google Scholar 

  26. Lee KC, Lin SJ, Lin CH, Tsai CS, Lu YJ (2008) Surf Coat Technol 202:5339

    Article  CAS  Google Scholar 

  27. Leica Microsystems GmbH, Ernst-Leitz-Strasse, 17-37 35578, Wetzlar, Germany

  28. Srolovitz DJ, Safran SA (1986) J Appl Phys 60(1):247

    Article  CAS  Google Scholar 

  29. Srolovitz DJ, Safran SA (1986) J Appl Phys 60(1):255

    Article  CAS  Google Scholar 

  30. Shaffir E, Riess I, Kaplan WD (2009) Acta Mater 57(1):248

    Article  CAS  Google Scholar 

  31. Baram M, Kaplan WD (2006) J Mater Sci 41(16):7775. doi:10.1007/s10853-006-0897-7

    Article  CAS  Google Scholar 

  32. Sadan H, Kaplan WD (2006) J Mater Sci 41(16):5371. doi:10.1007/s10853-006-0407-y

    Article  CAS  Google Scholar 

  33. Emundts A, Bonzel HP, Wynblatt P, Thurmer K, Reutt-Robey J, Williams ED (2001) Surf Sci 481(1–3):13

    Article  CAS  Google Scholar 

  34. Chatain D, Wynblatt P, Rohrer GS (2005) Acta Mater 53(15):4057

    Article  CAS  Google Scholar 

  35. Wang ZM, Wynblatt P (1998) Surf Sci 398(1–2):259

    Article  CAS  Google Scholar 

  36. Sadan H, Kaplan WD (2006) J Mater Sci 41(16):5099. doi:10.1007/s10853-006-0437-5

    Article  CAS  Google Scholar 

  37. Ye J, Thompson CV (2011) Adv Mater 23(13):1567

    Article  CAS  Google Scholar 

  38. Giermann AL, Thompson CV (2011) J Appl Phys 109(8):2011

    Article  Google Scholar 

  39. Ye J, Thompson CV (2010) Phys Rev B 82(19):193408

    Article  Google Scholar 

  40. Ye J, Thompson CV (2010) Acta Mater 59(2):582

    Article  Google Scholar 

  41. Chatain D, Ghetta V, Wynblatt P (2004) Interface Sci 12(1):7

    Article  CAS  Google Scholar 

  42. Gupta R, Dyer MJ, Weimer WA (2002) J Appl Phys 92:9

    Google Scholar 

  43. Kalyuzhny G, Vaskevich A, Schneeweiss MA, Rubinstein I (2002) Chem Eur J 8:17

    Article  Google Scholar 

  44. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009) Annu Rev Phys Chem 60:167

    Article  CAS  Google Scholar 

  45. Grand J, Adam PM, Grimault AS, Vial A, Chapelle ML, Bijeon JL, Kostcheev S, Royer P (2006) Plasmonics 1:135

    Article  CAS  Google Scholar 

  46. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:3

    Article  Google Scholar 

  47. Link S, EI-Sayed MA (1999) J Phys Chem B 103:8410

    Article  CAS  Google Scholar 

  48. Temple TL, Mahanama GDK, Reehal HS, Bagnall DM (2009) Sol Energy Mater Sol Cells 93:1978

    Article  CAS  Google Scholar 

  49. Langhammer C, Kasemo B, Zorić I (2007) J Chem Phys 126:194702

    Article  Google Scholar 

  50. Langhammer C, Schwind M, Kasemo B, Zorić I (2008) Nano Lett 8:5

    Article  Google Scholar 

  51. Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of continuous media, 2nd edn. Pergamon, Oxford

    Google Scholar 

  52. Johnson PB, Christy RW (1972) Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  53. Langhammer C, Yuan Z, Zorić I, Kasemo B (2006) Nano Lett 6:4

    Article  Google Scholar 

  54. Gotschy W, Vonmetz K, Leitner A, Aussenegg RF (1996) Appl Phys B 63(4):381

    CAS  Google Scholar 

  55. Wokaun A, Gordon JP, Liao PF (1982) Phys Rev Lett 48:957

    Article  CAS  Google Scholar 

  56. Meier M, Wokaun A (1983) Opt Lett 8:581

    Article  CAS  Google Scholar 

  57. Hanarp P, Kǎll M, Sutherland DS (2003) J Phys Chem B 107:5768

    Article  CAS  Google Scholar 

  58. Kwon SJ, Park JG (2006) Langmuir 22:3895

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is fund by National Basic Research Program of China (Nos. 2010CB933700 and 2011CBA0900), 863 (No. 2009AA03Z412) and STCSM (No. 09ZR1436000), and by grant from Chinese Academy of Science in supporting an international collaborative research team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Ming Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, JY., Lu, JX., Dai, N. et al. Surface plasma resonance spectra of Au nanoparticles formed from dewetted thin films. J Mater Sci 47, 668–676 (2012). https://doi.org/10.1007/s10853-011-5837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5837-5

Keywords

Navigation