Skip to main content

Advertisement

Log in

Deformation-driven formation of equilibrium phases in the Cu–Ni alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The homogeneous coarse-grained (CG) Cu–Ni alloys with nickel concentrations of 9, 26, 42, and 77 wt% were produced from as-cast ingots by homogenization at 850 °C followed by quenching. The subsequent high-pressure torsion (5 torsions at 5 GPa) leads to the grain refinement (grain size about 100 nm) and to the decomposition of the supersaturated solid solution in the alloys containing 42 and 77 wt% Ni. The lattice spacing of the fine Cu-rich regions in the Cu–77 wt% Ni alloy was measured by the X-ray diffraction (XRD). They contain 28 ± 5 wt% Ni. The amount of the fine Ni-rich ferromagnetic regions in the paramagnetic Cu–42 wt% Ni alloy was estimated by comparing its magnetization with that of fully ferromagnetic Cu–77 wt% Ni alloy. According to the lever rule, these Ni-rich ferromagnetic regions contain about 88 wt% Ni. It means that the high-pressure torsion of the supersaturated Cu–Ni solid solutions produces phases which correspond to the equilibrium solubility limit at 200 ± 40 °C (Cu–77 wt% Ni alloy) and 270 ± 20 °C (Cu–42 wt% Ni alloy). To explain this phenomenon, the concept of the effective temperature proposed by Martin (Phys Rev B 30:1424, 1984) for the irradiation-driven decomposition of supersaturated solid solutions was employed. It follows from this concept that the deformation-driven decomposition of supersaturated Cu–Ni solid solutions proceeds at the mean effective temperature T eff = 235 ± 30 °C. The elevated effective temperature for the high-pressure torsion-driven decomposition of a supersaturated solid solution has been observed for the first time. Previously, only the T eff equal to the room temperature was observed in the Al–Zn alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kunimine T, Aragaki T, Fujii T et al (2011) J Mater Sci 46:4302. doi:10.1007/s10853-010-5243-4

    Article  CAS  Google Scholar 

  2. Rebhi A, Makhlouf T, Champion Y et al (2011) J Mater Sci 46:2185. doi:10.1007/s10853-010-5056-5

    Article  CAS  Google Scholar 

  3. Wang CT, Gao N, Wood RJK et al (2011) J Mater Sci 46:123. doi:10.1007/s10853-010-4862-0

    Article  Google Scholar 

  4. Kawasaki M, Mendes AD, Sordi VL et al (2011) J Mater Sci 46:155. doi:10.1007/s10853-010-4889-2

    Article  CAS  Google Scholar 

  5. Zrnik J, Pippan R, Scheriau S et al (2010) J Mater Sci 45:4822. doi:10.1007/s10853-010-4482-8

    Article  CAS  Google Scholar 

  6. Martin G (1984) Phys Rev B 30:1424

    Article  CAS  Google Scholar 

  7. Delogu F (2009) Mater Chem Phys 115:641

    Article  CAS  Google Scholar 

  8. Xi SQ, Zuo KS, Li XG et al (2008) Acta Mater 56:6050

    Article  CAS  Google Scholar 

  9. Delogu F (2008) Scripta Mater 58:126

    Article  CAS  Google Scholar 

  10. Jiang WH, Atzmon M (2006) Scripta Mater 54:333

    Article  CAS  Google Scholar 

  11. Ye J, Liu JW, Enrique RA et al (2003) Scripta Mater 49:969

    Article  CAS  Google Scholar 

  12. Sheng HW, Lu K, Ma E (1999) J Appl Phys 85:6400

    Article  CAS  Google Scholar 

  13. Xu J, Collins GS, Peng LSJ et al (1999) Acta Mater 47:1241

    Article  CAS  Google Scholar 

  14. Ma E, Atzmon M (1995) Mater Chem Phys 39:249

    Article  CAS  Google Scholar 

  15. Adda Y, Beyeler M, Brebec G (1975) Thin Solid Films 25:107

    Article  CAS  Google Scholar 

  16. Roussel JM, Bellon P (2002) Phys Rev B 65:144107

    Article  Google Scholar 

  17. Wei LC, Averback RS (1997) J Appl Phys 81:613

    Article  CAS  Google Scholar 

  18. Soisson F, Bellon P, Martin G (1992) Phys Rev B 46:11332

    Article  Google Scholar 

  19. Valiev RZ, Estrin Y, Horita Z et al (2006) JOM 4:33

    Article  Google Scholar 

  20. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  21. Valiev R, Islamgaliev R, Alexandrov I (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  22. Straumal BB, Kogtenkova OA, Protasova SG et al (2011) J Mater Sci 46:4243. doi:10.1007/s10853-011-5257-6

    Article  CAS  Google Scholar 

  23. Straumal BB, Baretzky B, Mazilkin AA et al (2004) Acta Mater 52:4469

    Article  CAS  Google Scholar 

  24. Mazilkin AA, Straumal BB, Rabkin E et al (2006) Acta Mater 54:3933

    Article  CAS  Google Scholar 

  25. Straumal BB, Mazilkin AA, Protasova SG et al (2009) Mater Sci Eng A 503:185

    Article  Google Scholar 

  26. Straumal BB, Dobatkin SV, Rodin AO et al (2011) Adv Eng Mater 13:463

    Article  CAS  Google Scholar 

  27. Prokoshkin SD, Khmelevskaya IY, Dobatkin SV et al (2005) Acta Mater 53:2703

    Article  CAS  Google Scholar 

  28. Li W, Li X, Guo G et al (2009) Appl Phys Lett 94:231904

    Article  Google Scholar 

  29. Straumal BB, Mazilkin AA, Protasova SG et al (2011) Kovove Mater Metall Mater 49:17

    CAS  Google Scholar 

  30. Mazilkin AA, Abrosimova GE, Protasova SG et al (2011) J Mater Sci 46:4336. doi:10.1007/s10853-011-5304-3

    Article  CAS  Google Scholar 

  31. Massalski TB (ed) (1990) Binary alloy phase diagrams. ASM International, Materials Park, OH

    Google Scholar 

  32. Coles BR (1955–1956) J Inst Metals 84:346

  33. Lihl F, Ebel H, Reichl A et al (1968) Z Metallkunde 59:735

    CAS  Google Scholar 

  34. Mazilkin AA, Kogtenkova OA, Straumal BB et al (2005) Def Diff Forum 237:739

    Article  Google Scholar 

  35. Straumal BB, Mazilkin AA, Protasova SG et al (2008) Acta Mater 56:6246

    Article  CAS  Google Scholar 

  36. Straumal BB, Baretzky B, Mazilkin AA et al (2009) J Eur Ceram Soc 29:1963

    Article  CAS  Google Scholar 

  37. Jesser WA, Shneck RZ, Gile WW (2004) Phys Rev B 69:144121

    Article  Google Scholar 

  38. Mehrer H (ed) (1990) Diffusion in solid metals and alloys, Landolt-Börnstein New Series, Gr III, vol 26. Springer-Verlag, Berlin

    Google Scholar 

  39. Schaeffer H-E (1987) Phys Stat Sol (a) 102:47

    Article  Google Scholar 

  40. Straumal BB, Klinger LM, Shvindlerman LS (1984) Acta Metall 32:1355

    Article  CAS  Google Scholar 

  41. Molodov DA, Straumal BB, Shvindlerman LS (1984) Scripta Metall 18:207

    CAS  Google Scholar 

  42. Divinski SV, Reglitz G, Rösner H et al (2011) Acta Mater 59:1974

    Article  CAS  Google Scholar 

  43. Amouyal Y, Divinski SV, Estrin Y et al (2007) Acta Mater 55:5968

    Article  CAS  Google Scholar 

  44. Bellon P, Averback RS (1995) Phys Rev Lett 74:1819

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The investigations were partly supported by Russian Foundation for Basic Research (contracts 09-03-92481, 09-08-90406 and 11-08-90439) and Israel Ministry of Science (contract 3-5790). Authors cordially thank Prof. A.M. Gusak for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Straumal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straumal, B.B., Protasova, S.G., Mazilkin, A.A. et al. Deformation-driven formation of equilibrium phases in the Cu–Ni alloys. J Mater Sci 47, 360–367 (2012). https://doi.org/10.1007/s10853-011-5805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5805-0

Keywords

Navigation