Skip to main content
Log in

Effect of moisture absorption on the micromechanical behavior of carbon fiber/epoxy matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon fiber/epoxy material in the form of a single fiber unidirectional composite was subjected to controlled humidity environments. Moisture uptake in polymer composites has significant effects on the mechanical properties of the matrix as well as on the final performance of the composite material. Diminishing of the mechanical properties of the matrix is attributed to a decrease of its glass transition temperature (T g). The quality of the fiber–matrix interphase was assessed using the single fiber fragmentation test and the fiber-fragment length, considered as an indicator of interfacial quality. In order to measure the fiber fragment lengths and indentify failure mechanism at the interface optical observation and acoustic emission technique were used. The speed of propagation of an acoustic wave in the material was also determined. A comparison is made of interfacial shear strength values determined by acoustic emission and optical techniques. Excellent agreement between the two techniques was obtained. By means of a micromechanical model, it was possible to determine from the fragmentation lengths a measure of the interfacial shear strength between the fiber and the matrix. The role of moisture uptake swelling of the matrix on the residual stresses is considered to be important when considering the effect deterioration of interfacial shear properties. Both the contribution of the radial stresses and the mechanical component of fiber–matrix adhesion are seen to decrease rapidly for higher moisture contents in the matrix and/or interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Xiao GZ, Shanahan MER (1997) J Polym Sci B 3:2659

    Article  Google Scholar 

  2. Pomies F, Carlsson LA (1994) J. Compos Mater 28:22

    Article  CAS  Google Scholar 

  3. Adams DF (1986) A micromechanies analysis of the influence of the interface on the performance of polymer matrix composites. In: Proceedings of the American Society for composites, lst technical conference, 7–9 Oct. Technomic publishing, Dayton, p 207

  4. Chateauminois A, Chabert B, Soulier JP, Vincent L (1995) Polym Comp 16:288

    Article  CAS  Google Scholar 

  5. Soles CL, Chang FT, Gidley DW, Yee AF (2000) J Polym Sci B 38:776

    Article  CAS  Google Scholar 

  6. Drzal LT, Rich MJ, Koenig MF (1985) Adhesion 18:49

    Article  CAS  Google Scholar 

  7. Spragg CJ, Drzal LT (1996) Fiber, matrix and interface properties. ASTM STP no 1290. American Society for Testing and Materials, West Conshohocken

  8. Netravali AN, Li ZF, Sachse WH, Wu HF (1990) In: Buckley JD (ed) Third conference on advanced engineering fibers and textile structure for composites. NASA conference publication 3082, Hampton, VA

  9. Park JM, Chong EM, Dong JY, Lee JH (1998) Polym Comp 19:747

    Article  CAS  Google Scholar 

  10. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. CRC Press, New York

  11. ASTM (1985) Maintaining constant relative humidity by means of aqueous solutions. Book of ASTM standards, part 6. ASTM Designation E 104-85. American Society for Testing Materials, Philadelphia

  12. Mijovic J, Lin KF (1985) J Appl Polym Sci 30:2527

    Article  CAS  Google Scholar 

  13. Vanlandingham MR, Eduljee RF, Gillespie JW (1999) J Appl Polym Sci 71:787

    Article  CAS  Google Scholar 

  14. Xiao GZ, Shanahan MER (1998) J Appl Polym Sci 69:363

    Article  CAS  Google Scholar 

  15. Kolsky H (1963) Stress waves in solids. Dover Publications Inc., New York

    Google Scholar 

  16. Lu MG, Shim MJ, Kim SW (2001) J Appl Polym Sci 8:2253

    Article  Google Scholar 

  17. Nogueira P, Ramirez C, Torres A, Abad MJ, Cano J, Lopez J, Lopez-Bueno I, Barral L (2001) J Appl Polym Sci 80:71

    Article  CAS  Google Scholar 

  18. Rao V, Drzal LT (1991) Polym Compos 12:48

    Article  CAS  Google Scholar 

  19. Adamson MJ (1980) J Mater Sci 15:1736. doi:https://doi.org/10.1007/BF00550593

    Article  CAS  Google Scholar 

  20. Jackson ML, Love BJ, Hebner SR (1999) J Mater Sci Mater Electron 10:71

    Article  CAS  Google Scholar 

  21. Xu ZR, Ashbee KHG (1994) J Mater Sci 29:394. doi:https://doi.org/10.1364/AO.29.000394

    Article  CAS  Google Scholar 

  22. El-saad L, Darby MI, Yates B (1989) J Mater Sci 24:1653. doi:https://doi.org/10.1007/BF01105687

    Article  CAS  Google Scholar 

  23. Ebrahimzadeh PR, Mcqueen DH (1998) J Mater Sci 33:1201. doi:https://doi.org/10.1023/A:1004373525437

    Article  CAS  Google Scholar 

  24. Whitney JM, Drzal LT (1987) In: Johnston NJ (ed) ASTM STP 937 ASTM Committee D-30 on high modulus fibers and their composites, Philadelphia, USA

Download references

Acknowledgements

The authors wish to express the financial support from Consejo Nacional de Ciencia y Tecnología given through grant # 31272-U and for the scholarships granted to Mrs. Emilio Pérez Pacheco and Mr. Javier I. Cauich Cupul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Herrera-Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cauich-Cupul, J.I., Pérez-Pacheco, E., Valadez-González, A. et al. Effect of moisture absorption on the micromechanical behavior of carbon fiber/epoxy matrix composites. J Mater Sci 46, 6664–6672 (2011). https://doi.org/10.1007/s10853-011-5619-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5619-0

Keywords

Navigation