Skip to main content
Log in

Deformation behavior and microstructure evolution in multistage hot working of TA15 titanium alloy: on the role of recrystallization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interrupted compression tests of TA15 titanium alloy with initially equiaxed microstructure were carried out at deformation temperatures between 1173 to 1273 K and strain rates between 0.001 to 0.1 s−1 to investigate the deformation behavior and microstructure evolution under multistage deformation. The TA15 alloy exhibits significant flow softening in both β and (α + β) working. It is found that the flow softening relates to dynamic recrystallization of β phases under current experimental conditions. In multistage β working, metadynamic recrystallization is the main softening mechanism during inter-pass holding. The grain refinement by metadynamic recrystallization leads to the decrease in peak stress upon reloading. In multistage (α + β) working, static recrystallization is the main softening mechanism during inter-pass holding. The static recrystallization kinetics increases with temperature and strain rate. The inter-pass holding has little influence on the morphology of the primary α phases. The β grain size is determined by spacing of primary α phases, which is more affected by working temperature but less dependent on strain rate and inter-pass holding time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Vo P, Jahazi M, Yue S (2008) Metall Mater Trans A 39:2965

    Article  Google Scholar 

  2. Liu Y, Zhu J, Wang Y, Zhan J (2008) Mater Sci Eng A 490:113

    Article  Google Scholar 

  3. Sun ZC, Yang H, Han GJ, Fan XG (2010) Mater Sci Eng A 527:3464

    Article  Google Scholar 

  4. Lin YC, Chen MS, Zhong J (2009) J Mater Process Technol 209:2477

    Article  CAS  Google Scholar 

  5. Lin YC, Chen MS (2009) Mater Sci Eng A 501:229

    Article  Google Scholar 

  6. Weaver DS, Semiatin SL (2007) Scripta Mater 57:1044

    Article  CAS  Google Scholar 

  7. Beer AG, Barnett MR (2009) Scripta Mater 61:1097

    Article  CAS  Google Scholar 

  8. Sheppard T, Norley J (1988) Mater Sci Technol 4:903

    Article  CAS  Google Scholar 

  9. Ding R, Guo ZX (2004) Mater Sci Eng A 365:172

    Article  Google Scholar 

  10. Ma F, Lu W, Qin J, Zhang D (2006) Mater Sci Eng A 416:59

    Article  Google Scholar 

  11. Jackson M, Dashwood R, Christodoulou L, Flower H (2005) Metall Mater Trans A 36:1317

    Article  Google Scholar 

  12. Zong YY, Shan DB, Xu M, Lv Y (2009) J Mater Process Technol 209:1988.

    Article  CAS  Google Scholar 

  13. Zong YY, Shan DB, Lu Y (2006) J Mater Sci 41:3753. doi:https://doi.org/10.1007/s10853-006-2658-z

    Article  CAS  Google Scholar 

  14. Wanjara P, Jahazi M, Monajati H, Yue S, Immarigeon JP (2005) Mater Sci Eng A 396:50

    Article  Google Scholar 

  15. Huang LJ, Geng L, Li AB, Cui XP, Li HZ, Wang GS (2009) Mater Sci Eng A 505:136

    Article  Google Scholar 

  16. Furuhara T, Poorganji B, Abe H, Maki T (2007) JOM 59:64

    Article  CAS  Google Scholar 

  17. Ding R, Guo ZX, Wilson A (2002) Mater Sci Eng A 327:233

    Article  Google Scholar 

  18. Semiatin SL, Montheillet F, Shen G, Jonas JJ (2002) Metall Mater Trans A 33:2719

    Article  Google Scholar 

  19. Vo P, Jahazi M, Yue S, Bocher P (2007) Mater Sci Eng A 447:99

    Article  Google Scholar 

  20. Weiss I, Semiatin SL (1999) Mater Sci Eng A 263:243

    Article  Google Scholar 

  21. Luo J, Li M, Li H, Yu W (2009) Mater Sci Eng A 505:88

    Article  Google Scholar 

  22. Niu Y, Hou H, Li M, Li Z (2008) Mater Sci Eng A 492:24

    Article  Google Scholar 

  23. Momeni A, Abbasi SM (2010) Mater Design 31:3599

    Article  CAS  Google Scholar 

  24. Li MQ, Pan HS, Lin YY, Luo J (2007) J Mater Process Technol 183:71

    Article  CAS  Google Scholar 

  25. Briottet L, Jonas JJ, Montheillet F (1996) Acta Mater 44:1665

    Article  Google Scholar 

  26. Philippart I, Rack HJ (1998) Mater Sci Eng A 243:196

    Article  Google Scholar 

  27. Blaz L, Sakai T, Jonus JJ (1983) Metal Sci 17:609

    Article  CAS  Google Scholar 

  28. Kugluer G, Turk R (2004) Acta Mater 52:4659

    Article  Google Scholar 

  29. Fernández AI, López B, Rodriguez-Ibabe JM (1999) Scripta Mater 40:543

    Article  Google Scholar 

  30. Hunphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  31. Nes E, Ryum N, Hunderi O (1985) Acta Metall 33:11

    Article  CAS  Google Scholar 

  32. Stefansson N, Semiatin SL (2003) Metall Mater Trans A 34:691

    Article  Google Scholar 

  33. Semiatin SL, Kirby BC, Salishchev GA (2004) Metall Mater Trans A 35:2809

    Article  Google Scholar 

  34. Sakai T, Jonas JJ (1984) Acta Metall 32:189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the support of Natural Science Foundation for Key Program of China (No. 50935007) and National Basic Research Program of China (No. 2010CB731701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. G. Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, X.G., Yang, H. & Gao, P.F. Deformation behavior and microstructure evolution in multistage hot working of TA15 titanium alloy: on the role of recrystallization. J Mater Sci 46, 6018–6028 (2011). https://doi.org/10.1007/s10853-011-5564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5564-y

Keywords

Navigation