Skip to main content
Log in

A study on the synthesis of nanostructured WC–10 wt% Co particles from WO3, Co3O4, and graphite

  • Abbaschian Festschrift
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The formation of the nanostructured WC–10 wt% Co powder from WO3, Co3O4, and graphite is studied. The effects of the processing parameters of high-energy ball milling, reduction in H2 atmosphere, and carburization in Ar/CO atmosphere are investigated. The crystallite size of the as-synthesized WC is 30–40 and 40–50 nm for 900 and 1000 °C carburized powders, respectively. The powder is agglomerated with the size of the primary particles ranging from 50 to 700 nm. High-energy ball milling of WO3–Co3O4–C powder mixtures leads to finer particle and crystallite sizes with larger surface area. Such milled powders can be reduced to nanostructured W at 570 °C and carburized to form WC at temperatures as low as 900 °C. Crystal growth has taken place during carburization, particularly at 1000 °C, which results in the formation of truncated triangular prisms and nanoplates of WC at 1000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gleiter H (1992) Nanostruct Mater 1:1

    Article  CAS  Google Scholar 

  2. Fang Z, Wang X, Ryu T, Hwang K, Sohn H (2009) Int J Refract Metals Hard Mater 27:288

    Article  CAS  Google Scholar 

  3. Porat R, Berger S, Rosen A (1996) Mater Sci Forum 629:225

    Google Scholar 

  4. Fecht HJ (1992) Nanostruct Mater 1:125

    Article  CAS  Google Scholar 

  5. Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Metall Mater Trans A 21:2333

    Article  Google Scholar 

  6. Gao L, Kear BH, Seegopaul P (1999) US Patent 5,919,428

  7. Seegopaul P, Gao L (2003) US Patent 6,524,366

  8. Kim BK, Ha GG, Woo Y (2003) US Patent 6,511,551

  9. Lee G, Ha GH, Kim BK (1999) J Korean Inst Metal Mater 37:1233

    CAS  Google Scholar 

  10. Zhang ZY, Wahlberg S, Wang MS, Muhammed M (1999) Nanostruct Mater 12:163

    Article  Google Scholar 

  11. Ryu T, Sohn HY, Han G, Kim Y, Hwang KS, Mena M, Fang ZZ (2008) Metall Mater Trans B 39:1

    Article  Google Scholar 

  12. Hojo J, Oku T, Kato A (1978) J Less-Common Metal 59:85

    Article  CAS  Google Scholar 

  13. Fitzsimmons M, Sarin VK (1995) Surf Coat Technol 76:250

    Article  Google Scholar 

  14. Kim JC, Kim BK (2004) Scripta Mater 50:969

    Article  CAS  Google Scholar 

  15. Ban ZG, Shaw L (2002) J Mater Sci 37:3397. doi:10.1023/A:1016553426227

    Article  CAS  Google Scholar 

  16. Ban ZG, Shaw L (2001) Acta Mater 49:2933

    Article  CAS  Google Scholar 

  17. Yang ZG, Shaw L (1996) Nanostruct Mater 7:873

    Article  CAS  Google Scholar 

  18. Zhong Y, Shaw L, Manjarres M, Zawrah MM (2010) J Am Ceram Soc 93:3159

    Article  CAS  Google Scholar 

  19. Klug HP, Aexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  20. Snyder RL, Fiala J, Bunge HJ (1999) Defect and microstructure analysis by diffraction. Oxford University Press, Oxford

    Google Scholar 

  21. Mittermeijer EJ, Scardi P (2004) Diffraction analysis of the microstructure of materials. Springer-Verlag, Berlin

    Google Scholar 

  22. Ungar T (2004) Scripta Mater 51:777

    Article  CAS  Google Scholar 

  23. Liu W, Song X, Zhang J, Zhang G, Liu X (2008) Mater Chem Phys 109:235

    CAS  Google Scholar 

  24. Aronsson B, Pastor H (1991) Powder metallurgy: an overview. The Institute of Metals, London

    Google Scholar 

  25. Binnewies M, Milke E (2002) Thermochemical data of elements and compounds, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  26. Yih S, Wang C (1979) Tungsten: source metallurgy properties and applications. Plenum Press, New York, p 385

    Google Scholar 

  27. Gu D, Shen Y (2006) Mater Lett 60:3664

    Article  CAS  Google Scholar 

  28. de Villiers HL (1998) J Therm Spray Technol 7:357

    Article  Google Scholar 

  29. Sahraoui T, Guessasma S, Ali Jeridane M, Hadji M (2010) Mater Design 31:1431

    Article  CAS  Google Scholar 

  30. Exner HE (1979) Int Mater Rev 24:149

    CAS  Google Scholar 

  31. French DN, Thomas DA (1968) In: Vahldiek FV, Mersol J (eds) Anisotropy in single-crystal refractory compounds, vol 1. Plenum Press, New York

    Google Scholar 

  32. Takahashi T, Freise EJ (1965) Philos Mag 12:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the U.S. National Science Foundation (NSF) under the contract number CMMI-0856122. The support and vision of Dr. Mary Toney is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Shaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Y., Shaw, L. A study on the synthesis of nanostructured WC–10 wt% Co particles from WO3, Co3O4, and graphite. J Mater Sci 46, 6323–6331 (2011). https://doi.org/10.1007/s10853-010-4937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4937-y

Keywords

Navigation