Skip to main content
Log in

Nitrogen surface enrichment of austenitic stainless steel ISO 5832-1

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Austenitic stainless steels, although highly resistant to general corrosion, are susceptible to localized pitting or crevice corrosion. Corrosion resistance and mechanical properties could be enhanced by adding nitrogen to the alloy in solid solution. The methods currently in use involve fusion and solidification of the material, which may often be a deterrent, from the cost–benefit analysis stand point. In this article, the solution heat treatment after plasma nitriding (SHTPN) is presented as a new method to increase the surface nitrogen content in the solid state. The results obtained demonstrated the efficiency of this technique, by which the achieved thickness of the nitrided steel reaches up to 200 μm with 0.45 wt% of nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fossati A, Borgioli F, Galvanetto E, Bacci T (2006) Corros Sci 48:1513

    Article  CAS  Google Scholar 

  2. Reis RF (2007) Thesis (doctor degree), UTFPR, Curitiba

  3. Gavriljuk VG, Berns H (1999) High nitrogen steels. Springer, Berlin

    Google Scholar 

  4. Borges PC, Martinelli AE, Franco CV (2004) Mater Corros 55:594

    Article  CAS  Google Scholar 

  5. Liang W (2003) Appl Surf Sci 211:308

    Article  Google Scholar 

  6. Borgioli F, Fossati A, Galvanetto E, Bacci T (2005) Surf Coat Technol 200:2474

    Article  CAS  Google Scholar 

  7. Larisch B, Rusky BU, Spies HJ (1999) Surf Coat Technol 116–119:215

    Google Scholar 

  8. Liang W, Bin X, Zhiwei Y, Yaqin S (2000) Surf Coat Technol 130:304

    Article  CAS  Google Scholar 

  9. Lin JF, Chen KW, Wei CC, Ai CF (2005) Surf Coat Technol 197:28

    Article  CAS  Google Scholar 

  10. Xi Y, Liu D, Han D (2008) Surf Coat Technol 202:2577

    Article  CAS  Google Scholar 

  11. Bernardelli EA, Borges PC, Fontana LC, Floriano JB (2010) Kovove Mater 48:105

    CAS  Google Scholar 

  12. Abreu CM, Cristóbal MJ, Merino P, Nóvoa XR, Pena G, Pérez MC (2008) Electrochim Acta 53:6000

    Article  CAS  Google Scholar 

  13. Ma X, Jiang S, Sun Y, Tang G, Sun M (2007) Surf Coat Technol 201:6695

    Article  CAS  Google Scholar 

  14. Garzón CM, Tschiptschin AP (2005) Rev Matér 10:502

    Google Scholar 

  15. Sung JH, Kong JH, Yoo DK, On HY, Lee DJ, Lee HW (2008) Mater Sci Eng A 489:38

    Article  Google Scholar 

  16. Fossati A, Borgioli F, Galvanetto E, Bacci T (2006) Surf Coat Technol 200:3511

    Article  CAS  Google Scholar 

  17. Gontijo LC, Machado R, Miola EJ, Casteletti LC, Alcântara NG, Nascente PAP (2006) Mater Sci Eng A431:315

    CAS  Google Scholar 

  18. Berns H (1994) Patent DE4333917, April 2

  19. Reis RF, Schreiner WH, Borges PC (2006) Rev Bras Apl Vácuo 25:183

    CAS  Google Scholar 

  20. Reis RF, Maliska AM, Borges PC (2008) Rev Matér 13:304

    Google Scholar 

  21. Reis RF, Maliska AM, Borges PC (2007) Rev Brasil Apl Vácuo 26:205

    Google Scholar 

  22. Machado IF (1999) Thesis (doctor degree). EP-USP, São Paulo

  23. Kikuchi M, Kajihara M, Choi S-K (1991) Mater Sci Eng A146:131

    CAS  Google Scholar 

  24. Vanderschaeve F, Taillard R, Foct J (1995) J Mater Sci 30:6035. doi:10.1007/BF01151525

    Article  CAS  Google Scholar 

  25. López D, Falleiros NA, Tschiptschin AP (2007) Wear 263:347

    Article  Google Scholar 

  26. Liang W, Juncai S, Xiaolei X (2001) Surf Coat Technol 145:31

    Article  CAS  Google Scholar 

  27. DeLong WT, Ostrom GA, Szumachowski ER (1956) Weld J 35:521

    Google Scholar 

  28. American Society for Metals (1991) ASM handbook, vol 4. Ohio American Society for Metals, OH (Surface hardening steel, p 264)

  29. Ellingham diagram web tool: http://www.engr.sjsu.edu/ellingham/

  30. Tanaka M (1994) Z Metallkunde 85:446

    CAS  Google Scholar 

  31. Nakada N, Hirakawa N, Tsuschiyama T, Takaki S (2007) Scr Mater 57:153

    Article  CAS  Google Scholar 

  32. Sundman B (1998) Thermocalc user’s guide, version M. Royal Institute of Technology, Stockholm

  33. Berns H, Siebert S (1996) High nitrogen austenitic cases in stainless steels, IJIS Inter., vol 36, no 7, p 927

  34. Borges PC, Rocha LA, Kovove Mater (unpublished data)

Download references

Acknowledgements

The authors wish to thank Villares Metals for the donation of the material employed in the research and SOCIESC—SC for the salt bath solution heat treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Borges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, R.F., Maliska, A.M. & Borges, P.C. Nitrogen surface enrichment of austenitic stainless steel ISO 5832-1. J Mater Sci 46, 846–854 (2011). https://doi.org/10.1007/s10853-010-4827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4827-3

Keywords

Navigation