Skip to main content
Log in

Crystal structure refinement of A-type carbonate apatite by X-ray powder diffraction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Complete carbonate substitution at A-sites (OH) of low-crystallinity hydroxyapatite with near stoichiometric composition (i.e. Ca/P ratio of 1.65) was achieved by heating in a dry carbon dioxide flow at 1173 K for 64 h. The carbonate content was analysed by thermogravimetry and infrared absorption spectrometry; the chemical composition was determined to be Ca9.9±0.1(PO4)6.00±0.1(CO3)0.9±0.1. The crystal structure and atomic configuration of the carbonate ion were determined by Rietveld refinement using X-ray powder diffraction data. This analysis revealed that the space group was monoclinic Pb with a = 0.9571(1), b = 1.9085(2), c = 0.68755(3) nm and γ = 119.847(7)°. The triangular planes of the carbonate ions were oriented parallel to the c- and a-axes, though there were two independent carbonate sites with occupancy factors of 0.56(1) and 0.34(1), where the triangles were oppositely rotated about the corresponding carbon atoms by 23° and −18°, respectively. The arrangement of the ions was disordered, which explains the lack of a thermal phase transition below 623 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. LeGeros RZ, Trautz OR, LeGeros JP, Klein E (1969) Cell Mol Life Sci 15:5

    Article  Google Scholar 

  2. LeGeros RZ (1994) In: Brown PW, Constantz B (eds) Hydroxyapatite and related materials. CRC Press Inc., Boca Raton

    Google Scholar 

  3. Lee JC, Cho SB, Lee SJ, Rhee SH (2009) J Mater Sci 44:4531. doi:10.1007/s10853-009-3685-3s

    Article  ADS  CAS  Google Scholar 

  4. Barralet JE, Fleming GJP, Campion C, Harris JJ, Wright AJ (2003) J Mater Sci 38:3979. doi:10.1023/A:1026258515285

    Article  CAS  Google Scholar 

  5. Barinov SM, Rau JV, Cesaro SN, Durisin J, Fadeeva IV, Ferro D, Medvecky L, Trionfetti G (2006) J Mater Sci Mater Med 17:597

    Article  PubMed  CAS  Google Scholar 

  6. Komlev VS, Fadeeva IV, Gurin AN, Kovaleva ES, Smirnov VV, Gurin NA, Barinov SM (2009) Inorg Mater 45:329

    Article  CAS  Google Scholar 

  7. Ikoma T, Kubo Y, Yamazaki A, Akao M, Tanaka J (2001) Key Eng Mater 192-5:191

    Article  Google Scholar 

  8. Ito A (1988) Crystal growth and structure of apatitic phosphates. PhD Thesis, Waseda University

  9. Suetsugu Y, Takahashi Y, Okamura FP, Tanaka J (2000) J Solid State Chem 155:292

    Article  ADS  CAS  Google Scholar 

  10. Elliott JC (1980) J Appl Crystallogr 13:618

    Article  CAS  Google Scholar 

  11. Fleet ME, Liu X (2003) J Solid State Chem 174:412

    Article  ADS  CAS  Google Scholar 

  12. Fleet ME, Liu X (2005) Biomaterials 26:7548

    Article  PubMed  CAS  Google Scholar 

  13. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier Press, Amsterdam

    Google Scholar 

  14. Trombe JC (1973) Ann Chim (Paris) 14th Series 8:251

  15. Bonel G (1972) Ann Chim (Paris) 14th Series 7:65

  16. Bonel G (1972) Ann Chim (Paris) 14th Series 7:127

  17. Ikoma T, Yamazaki A, Nakamura S, Akao M (1999) J Solid State Chem 144:272

    Article  ADS  CAS  Google Scholar 

  18. Izumi F, Ikeda T (2000) Mater Sci Forum 321–324:198

    Article  Google Scholar 

  19. Alberius-Henning P, Adolfsson E, Grins J, Fitch A (2001) J Mater Sci 36:663. doi:10.1023/A:1004876622105s

    Article  CAS  Google Scholar 

  20. Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) Calcif Tissue Int 45:157

    Article  PubMed  CAS  Google Scholar 

  21. Rey C, Renugopalakrishnan V, Collins B, Glimcher MJ (1991) Calcif Tissue Int 49:251

    Article  PubMed  CAS  Google Scholar 

  22. Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Calcif Tissue Int 49:259

    Article  PubMed  CAS  Google Scholar 

  23. Peroos S, Du Z, Henriette de Leeuw N (2006) Biomaterials 27:2150

    Article  PubMed  CAS  Google Scholar 

  24. Astala R, Stott MJ (2005) Chem Mater 17:4125

    Article  CAS  Google Scholar 

  25. Elliott JC (1973) Science 180:1055

    Article  PubMed  ADS  CAS  Google Scholar 

  26. Kay MI, Young RA, Posner AS (1964) Nature 204:1050

    Article  PubMed  ADS  CAS  Google Scholar 

  27. Young RA, Bartlett ML, Spooner S, Mackie PE (1981) J Biol Phys 9:1

    Article  CAS  Google Scholar 

  28. Suetsugu Y, Shimoya I, Tanaka J (1998) J Am Ceram Soc 81:746

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Ikoma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonegawa, T., Ikoma, T., Yoshioka, T. et al. Crystal structure refinement of A-type carbonate apatite by X-ray powder diffraction. J Mater Sci 45, 2419–2426 (2010). https://doi.org/10.1007/s10853-010-4209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4209-x

Keywords

Navigation