Skip to main content
Log in

Morphological and phase dependence of nanotitania materials generated under extreme pH conditions for large scale production of TiO2 nanowires (basic) and nanosquares or nanrods (acidic)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect that the phase of the starting nanoseed titania (TiO2), the pH of the solvent solution, and the processing methodology employed have on the properties of the resultant TiO2 nanomaterials were explored. This led to the development of a new process to produce large-scale, phase pure, thin nanowires of TiO2 at high pH and nanosquares at low pH. Anatase, rutile, and Degussa P25TM TiO2 nanoparticle starting materials (or nanoseeds) were processed in strongly basic (10 M KOH) and strongly acidic (conc. HX, where X = Cl, Br, I) solutions using solvothermal (SOLVO) and solution precipitation (SPPT) methodologies. Under basic SOLVO conditions, the nanoseeds were converted to H2Ti2O5·H2O nanowires. The SPPT basic conditions also produced the same phased nanowires for the rutile and anatase nanoseeds, while the Degussa nanomaterial yielded mixed phased [anatase:rutile (9:1)] nanowires. The SPPT method was found to produce substantially thinner nanowires in comparison to the SOLVO route, with comparable surface areas but the strong basic media led to etching of the glassware yielding HK3Ti4O4(SiO4)3·4H2O nanorods. Hybridization of these two processing routes led to the use of NalgeneTM bottle as the reaction flask termed the hybrid (HYBR) route, yielding even thinner H2Ti2O5·H2O nanowires on a large-scale. Switching to a concentrated halide acid (HX, where X = Cl, Br, I) system, SOLVO, SPPT, and HYBR routes were investigated. The resultant TEM images revealed that the rutile starting material yielded short rods, whereas the anatase seeds formed square or faceted materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kislyuk VV, Dimitriev OP (2008) J Nanosci Nanotech 8:131

    Article  CAS  Google Scholar 

  2. Zhu BL, Li KO, Zhang SM, Wu SH, Huang WP (2008) Prog Chem 20:48

    CAS  Google Scholar 

  3. van de Krol R, Liang YQ, Schoonman J (2008) J Mater Chem 18:2311

    Article  Google Scholar 

  4. Qui JJ, Yu WD, Gao XD, Li XM, He WZ, Park SJ, Kim HK, Hwang YH (2008) J Sol-Gel Sci Tech 47:187

    Article  Google Scholar 

  5. Masuda Y, Kato K (2008) Cryst Growth Des 8:3213

    Article  CAS  Google Scholar 

  6. Ban T, Nakatani T, Uehara Y, Ohya Y (2008) Cryst Growth Des 8:935

    Article  CAS  Google Scholar 

  7. Bavyin DV, Cressey BA, Walsh FC (2007) Aust J Chem 60:95

    Article  Google Scholar 

  8. Yuan ZY, Su BL (2004) Coll Surf A—Phys Engin Asp 241:173

    Article  CAS  Google Scholar 

  9. Wang BX, Shi Y, Xue DF (2007) J Solid State Chem 180:1028

    Article  CAS  ADS  Google Scholar 

  10. Khan SUM, Sultana T (2003) Solar Energy Mater Solar Cells 76:211

    Article  CAS  Google Scholar 

  11. Hakuta Y, Hayashi H, Arai K (2004) Mater Res Soc Symp Proc 789:263

    Google Scholar 

  12. Dong W, Cogbill A, Zhang T, Ghosh S, Tian ZR (2006) J Phys Chem B Lett 110:16819

    CAS  Google Scholar 

  13. Tian ZR, Voigt JA, Liu J, McKenzie B, Xu H (2003) J Am Chem Soc 125:12384

    Article  CAS  PubMed  Google Scholar 

  14. Penn RL, Banfield JF (1999) Geochimica Cosmochim Acta 63:1549

    Article  CAS  ADS  Google Scholar 

  15. Gao Y, Elder SA (2000) Mater Lett 44:228

    Article  CAS  Google Scholar 

  16. Chemseddine A, Mortiz T (1999) Eur J Inorg Chem 2:235

    Article  Google Scholar 

  17. Sugimoto T, Zhou X, Muramatsu A (2003) J Colloid Interface Sci 259:43

    Article  CAS  PubMed  Google Scholar 

  18. Finnegan MP, Zhang H, Banfield JF (2007) J Phys Chem C 111:1962

    Article  CAS  Google Scholar 

  19. Li Y, White TJ, Lim SH (2004) J Solid State Chem 177:1372

    Article  CAS  ADS  Google Scholar 

  20. Sugimoto T, Zhou X, Muramatsu A (2003) J Colloid Interface Sci 259:53

    Article  CAS  PubMed  Google Scholar 

  21. Zaban A, Aruna ST, Tirosh S, Gregg BA, Mastai Y (2000) J Phys Chem B 104:4130

    Article  CAS  Google Scholar 

  22. Aruna ST, Tirosh S, Zaban A (2000) J Mater Chem 10:2388

    Article  CAS  Google Scholar 

  23. Barnard AS, Curtiss LA (2005) NanoLetters 5:1261

    CAS  ADS  Google Scholar 

  24. Roy SC, Paulose M, Grimes CA (2007) Biomaterials 28:4667

    Article  CAS  PubMed  Google Scholar 

  25. Bright E, Readey DW (1987) J Am Ceram Soc 70:900

    Article  CAS  Google Scholar 

  26. Schmuki P, Bauer S, Kleber S (2006) Electrochm Commun 8:1321

    Article  Google Scholar 

  27. Wu G, Wang J, Thomas DF, Chen A (2008) Langmuir 24:3503

    Article  CAS  PubMed  Google Scholar 

  28. Lan Y, Gao XD, Zhu H, Zheng Z, Yan T, Wu F, Ringer SP, Song D (2005) Adv Funct Mater 15:1310

    Article  CAS  Google Scholar 

  29. Chen XB, Mao SS (2006) J Nanosci Nanotech 6:906

    Article  CAS  Google Scholar 

  30. Chen XB, Mao SS (2007) Chem Rev 107:2891

    Article  CAS  PubMed  Google Scholar 

  31. Tachikawa T, Fujitsuka M, Majima T (2007) J Phys Chem C 111:5259

    Article  CAS  Google Scholar 

  32. Jwo CS, Tien DC, Teng TP, Chang H, Tsung TT, Liao CY, Lin CH (2005) Rev Adv Mater Sci 10:283

    CAS  Google Scholar 

  33. Tomovska R, Marinkovski M, Frajgar R (2007) NATO Sci Peace Security Series C-Envir Security 207

  34. Swamy V (2008) Phys Rev B 77:195414

    Article  ADS  Google Scholar 

  35. Sasaki T, Shimizu Y, Koshizaki N (2005) Rev Laser Engin 33:18

    CAS  Google Scholar 

  36. Theron J, Walker JA, Cloete TE (2008) Crit Rev Microbiol 34:43

    Article  CAS  PubMed  Google Scholar 

  37. Bogue RW (2004) Sensor Rev 24:253

    Article  Google Scholar 

  38. Bruce PG, Scrosati B, M TJ (2008) Angew Chem IEEE 47:2930

    Article  CAS  Google Scholar 

  39. Jing LQ, Qu YC, Wang BQ, Li SD, Jiang BJ, Yang LB, Fu W, Fu HG, Sun JZ (2006) Solar Energy Mater Solar Cells 90:1773

    Article  CAS  Google Scholar 

  40. Hulteen JC, Martin CR (1997) J Mater Chem 7:1075

    Article  CAS  Google Scholar 

  41. Ofir Y, Samanta B, Rotello VM (2008) Chem Soc Rev 37:1814

    Article  CAS  PubMed  Google Scholar 

  42. Balazs AC, Emrick T, Russell TP (2006) Science 314:1107

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Vaia RA, Maguire JF (2007) Chem Mater 19:2736

    Article  CAS  Google Scholar 

  44. Mackay ME, Tuteja A, Duxbury PM, Hwawker CJ, Van Horn B, Guan Z, Chen G, Krishnan RS (2006) Science 311:1740

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Jade XRD Pattern Processing MDI, Inc., Livermore, CA (1999)

  46. Daoud WA, Pang GKH (2006) J Phys Chem B 110:25746

    Article  CAS  PubMed  Google Scholar 

  47. Sugita M, Tsugi M, Abe M (1990) Bull Chem Soc Jpn 63:1978

    Article  CAS  Google Scholar 

  48. Mer’kov AN, Bussen IV, Goiko EA, Kul’chitskaya EA, Men’shikov YP, Nedorezova AP (1973) Zap Vses Miner O-va 102:54

    Google Scholar 

  49. Valtchev V, Paillaud J-L, Mintova S, Kessler H (1999) Microporous Mesoporous Mater 32:287

    Article  CAS  Google Scholar 

  50. Sandomirskii PA, Belov NV (1979) Sov Phys Crystallogr 24:686

    Google Scholar 

  51. Barnard AS, Xu H (2008) ACSNano 2:2237

    CAS  Google Scholar 

  52. Yeredla RR, Xu H (2008) Nanotechnology 19:1

    Article  Google Scholar 

  53. Machesky ML, Wesolowski DJ, Fidley MK, Palmer DA, Rosenqvist J, Lvov SN, Fedkin M, Predota M, Vlcek L (2008) ECS Trans 11:151

    Article  CAS  Google Scholar 

  54. Buchanan RC, Park T (1997) Materials crystal chemistry. Marcel Dekker, Inc., New York

    Google Scholar 

  55. Selloni A (2008) Nat Mater 7:613

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K (1999) Thin Solid Films 351:260

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

For support of this research, the authors thank the U.S. Department of Energy, Office of Basic Energy Science, Division of Material Sciences and Engineering and the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Boyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyle, T.J., Lambert, T.N., Pratt, H.D. et al. Morphological and phase dependence of nanotitania materials generated under extreme pH conditions for large scale production of TiO2 nanowires (basic) and nanosquares or nanrods (acidic). J Mater Sci 45, 1744–1759 (2010). https://doi.org/10.1007/s10853-009-4148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4148-6

Keywords

Navigation