Skip to main content
Log in

Phase transformation and precipitation behavior of niobium component out of niobium-doped anatase-type TiO2 nanoparticles synthesized via hydrothermal crystallization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The precipitation behavior of niobium component out of niobium-doped anatase-type TiO2 and structural change in the course of heating were investigated. The samples were directly formed under hydrothermal conditions at 240 °C for 5 h in the presence of aqueous ammonia via crystallization from co-precipitates that were obtained from precursor solutions of TiOSO4 and NbCl5. The as-prepared niobium-doped anatase-type titania nanoparticles showed bluish color and absorption in the visible region, which was confirmed to be due to the presence of Ti(III) in the solid solutions using electron paramagnetic resonance measurement. The niobium-doped anatase-type titania existed stably without an appearance of any other phases after heating up to 500 °C for 1 h. In the course of heating at 500–800 °C, continual and clear decrease in the lattice parameters a0 and c0 of the anatase was observed, which was followed by the precipitation of Nb2O5 and TiNb2O7 out of the niobium-doped anatase, but the anatase phase was maintained without anatase-to-rutile phase transformation up to 850–1,000 °C. The anatase-to-rutile phase transformation was gradually retarded when the niobium content increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fox MA, Dulay MT (1993) Chem Rev 93:341

    Article  CAS  Google Scholar 

  2. O’Regon B, Gratzel M (1991) Nature 353:737

    Article  Google Scholar 

  3. Ferroni M, Guidi V, Martinelli G, Faglia G, Nelli P, Sberveglieri G (1996) Nanostruct Mater 7:709

    Article  CAS  Google Scholar 

  4. Shannon RD, Pask JA (1965) J Am Ceram Soc 48:391

    Article  CAS  Google Scholar 

  5. Shannon RD, Pask JA (1964) Am Miner 49:1707

    CAS  Google Scholar 

  6. Mackenzie KJD (1975) Trans J Br Ceram Soc 74:77

    CAS  Google Scholar 

  7. Suyama Y, Kato A (1978) J Ceram Soc Jpn 86:119 [in Japanese]

    CAS  Google Scholar 

  8. Hishida S, Tanaka M, Yanagida H (1978) J Ceram Soc Jpn 86:631

    Google Scholar 

  9. Leduc CA, Campbell JM, Rossin JA (1996) Ind Eng Chem Res 25:2473

    Article  Google Scholar 

  10. Gennari FC, Pasquevich DM (1998) J Mater Sci 33:1571. doi:https://doi.org/10.1023/A:1017515804370

    Article  CAS  Google Scholar 

  11. Hirano M, Joji T, Inagaki M, Iwata H (2004) J Am Ceram Soc 87:35

    Article  CAS  Google Scholar 

  12. Hirano M, Ota K, Ito T (2005) J Am Ceram Soc 88:3303

    Article  CAS  Google Scholar 

  13. Oliveri G, Ramis G, Busca G, Escribano VS (1993) J Mater Chem 3:1239

    Article  CAS  Google Scholar 

  14. Rao CNR, Turner A, Honig JM (1959) J Phys Chem 11:173

    CAS  Google Scholar 

  15. Ding XZ, Liu XH (1998) J Mater Res 13:2556

    Article  CAS  Google Scholar 

  16. Deo G, Turek AM, Wachs IE, Machej T, Haber J, Das N, Eckert H, Hirt AM (1992) Appl Catal A 91:27

    Article  CAS  Google Scholar 

  17. Dutta PK, Ginwalla A, Hogg B, Patton BR, Chwieroth B, Liang Z, Gouma P, Mills M, Akbar S (1999) J Phys Chem B 103:4412

    Article  CAS  Google Scholar 

  18. Hirano M, Ota K, Iwata H (2004) Chem Mater 16:3725

    Article  CAS  Google Scholar 

  19. Czanderna AW, Rao CNR, Honig JM (1958) Trans Faraday Soc 54:1069

    Article  CAS  Google Scholar 

  20. Yoganarasimhan SR, Rao CNR (1962) Trans Faraday Soc 58:1579

    Article  CAS  Google Scholar 

  21. Hirano M, Morikawa H (2003) Chem Mater 15:2561

    Article  CAS  Google Scholar 

  22. Hirano M, Matsushima K (2006) J Am Ceram Soc 89:110

    Article  CAS  Google Scholar 

  23. Hirano M, Nakahara C, Ota K, Tanaike O, Inagaki M (2003) J Solid State Chem 170:39

    Article  CAS  Google Scholar 

  24. Hirano M, Date K (2005) J Am Ceram Soc 88:2604

    Article  CAS  Google Scholar 

  25. Tanabe K, Okazaki S (1995) Appl Catal A Gen 133:191

    Article  CAS  Google Scholar 

  26. Zhang Z, Wang CC, Zakaria R, Ying JY (1998) Phys Chem B 102:10871

    Article  CAS  Google Scholar 

  27. Zakrzewska K, Radecka M, Rekas M (1997) Thin Solid Films 310:161

    Article  CAS  Google Scholar 

  28. Sharma RK, Bhatnagar MC (1999) Sens Actuators B 56:215

    Article  CAS  Google Scholar 

  29. Hirano M, Matsushima K (2006) J Nanosci Nanotechnol 6:762

    Article  CAS  Google Scholar 

  30. Hirano M, Ito T (2006) J Nanosci Nanotecnol 6:3820

    Article  CAS  Google Scholar 

  31. Hirano M, Ito T (2008) Mater Res Bull 43:2196

    Article  CAS  Google Scholar 

  32. Spurr RA, Myers H (1957) Anal Chem 29:760

    Article  CAS  Google Scholar 

  33. Criado BJ, Real C (1983) J Chem Soc Faraday Trans 1 79:2765

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Shingo Sato for his assistance. The present work was partly supported by Grant-in Aids No. 21560703 for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Hirano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirano, M., Ichihashi, Y. Phase transformation and precipitation behavior of niobium component out of niobium-doped anatase-type TiO2 nanoparticles synthesized via hydrothermal crystallization. J Mater Sci 44, 6135–6143 (2009). https://doi.org/10.1007/s10853-009-3848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3848-2

Keywords

Navigation