Skip to main content
Log in

On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects

  • Ferroelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Vanadium dioxide (VO2) has been shown to undergo an abrupt electronic phase transition near 70 °C from a semiconductor to a metal, with an increase in dc conductivity of over three orders of magnitude, making it an interesting candidate for advanced electronics as well as fundamental research in understanding correlated electron systems. Recent experiments suggest that this transition can be manifested independent of a structural phase transition in the system, and that it can be triggered by the application of an electric field across the VO2 thin film. Several experiments that have studied this behavior, however, also involve a heating of the VO2 channel by leakage currents, raising doubts about the underlying mechanism behind the transition. To address the important question of thermal effects due to the applied field, we report the results of electro-thermal simulations on a number of experimentally realized device geometries, showing the extent of heating caused by the leakage current in the “off” state of the VO2 device. The simulations suggest that in a majority of the cases considered, Joule heating is insufficient to trigger the transition by itself, resulting in a typical temperature rise of less than 10 K. However, the heating following a field-induced transition often also induces the structural transition. Nevertheless, for certain devices, we identify the possibility of maintaining the field-induced high conductivity phase without causing the structural phase transition: an important requirement for the prospect of making high-speed switching devices based on VO2 thin film structures. Such electronically driven transitions may also lead to novel device functionalities including ultra-fast sensors or gated switches incorporating ferroelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Morin FJ (1959) Phys Rev Lett 3:34

    Article  CAS  Google Scholar 

  2. Zylbersztejn A, Mott NF (1975) Phys Rev 11:4383

    Article  CAS  Google Scholar 

  3. Berglund CN, Guggenheim HJ (1969) Phys Rev 185:1022

    Article  CAS  Google Scholar 

  4. Mott NF (1990) Metal-insulator transition. Taylor and Frances, London

    Book  Google Scholar 

  5. Goodenough JB (1971) J Solid State Chem 3:490

    Article  CAS  Google Scholar 

  6. Imada M et al (1998) Rev Mod Phys 70:1039

    Article  CAS  Google Scholar 

  7. Cavalleri A et al (2001) Phys Rev Lett 87:237401

    Article  CAS  Google Scholar 

  8. Cavalleri A et al (2004) Phys Rev B 70:161102

    Article  Google Scholar 

  9. Xu S et al (2004) J Mater Sci 39:489. doi:https://doi.org/10.1023/B:JMSC.0000011503.22893.f4

    Article  CAS  Google Scholar 

  10. Stefanovich G et al (2000) J Phys Condens Matter 12:8837

    CAS  Google Scholar 

  11. Boriskov PP et al (2002) Tech Phys Lett 28:406

    Article  CAS  Google Scholar 

  12. Kim HT et al (2004) New J Phys 6:52

    Article  Google Scholar 

  13. Watanabe Y (1995) Appl Phys Lett 66:1770

    Article  CAS  Google Scholar 

  14. Mathews S et al (1997) Science 276:238

    Article  CAS  Google Scholar 

  15. Kim HT et al (2006) Phys Rev Lett 97:266401

    Article  Google Scholar 

  16. Kim BJ et al (2008) Phys Rev B 77:235401

    Article  Google Scholar 

  17. Sakai J, Kurisu M (2008) Phys Rev B 78:033106

    Article  Google Scholar 

  18. Lee JS et al (2007) Appl Phys Lett 90:015907

    Google Scholar 

  19. Lee JS et al (2007) Appl Phys Lett 91:133509

    Article  Google Scholar 

  20. Samsonov GV (1987) The oxide handbook. IFI/Plenum, New York

    Google Scholar 

  21. Kim HT et al (2005) Appl Phys Lett 86:242101

    Article  Google Scholar 

  22. Okimura K, Sakai J (2007) Jpn J Appl Phys 46:813

    Article  Google Scholar 

  23. Berglund CN (1969) IEEE Trans Electron Devices 16:432

    Article  Google Scholar 

  24. Duchene J et al (1971) Appl Phys Lett 19:115

    Article  CAS  Google Scholar 

  25. Chae BG et al (2004) J Korean Phys Soc 44:884

    CAS  Google Scholar 

  26. Youn DH et al (2004) J Appl Phys 95:1407

    Article  CAS  Google Scholar 

  27. Kim BJ et al (2007) Appl Phys Lett 90:023515

    Article  Google Scholar 

  28. Ruzmetov D et al (2008) Phys Rev B 77:195442

    Article  Google Scholar 

  29. Ko C, Ramanathan S (2008) Appl Phys Lett 93:252101

    Article  Google Scholar 

  30. Lasance C, Moffat C (2005) Elec Cool 11:4

  31. Mlyuka NR, Kivaisi RT et al (2006) J Mater Sci 41:5619. doi:https://doi.org/10.1007/s10853-006-0261-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by AFRL-WPAFB and NSF-SIA Supplement to the Nanoscale Science and Engineering Initiative under NSF Award Number PHY-0601184. Device fabrication was performed, in part, at the Harvard University Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by NSF Award No. ECS-0335765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokul Gopalakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalakrishnan, G., Ruzmetov, D. & Ramanathan, S. On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects. J Mater Sci 44, 5345–5353 (2009). https://doi.org/10.1007/s10853-009-3442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3442-7

Keywords

Navigation