Skip to main content
Log in

Enhanced corrosion resistance of discontinuous anodic film on in situ TiB2p/A356 composite by cerium electrolysis treatment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The agglomerates of TiB2 particulates and Si phases badly break the continuity of anodized film of in situ TiB2p/A356 composite, which will restrict the improvement of corrosion resistance. In this study, cerium conversion coatings were successfully deposited on anodized TiB2p/A356 composite by electrolysis treatment. Scanning electron microscope observations show that the conversion coatings effectively cover the whole surface of anodized composite. The conversion coatings on continuous porous anodic film are composed of many spherical nano-particulates; however, at the regions without anodic film the conversion coatings present a planar structure. The different morphologies are attributed to the different formation characteristics of cerium conversion coatings at different regions of anodized composite. X-ray photoelectron spectroscopy analysis indicates that the conversion coatings consist of CeO2, Ce2O3, Ce(OH)4, and Ce(OH)3. The potentiodynamic polarization results testify that the integrated surface coatings of anodic film and cerium conversion coating provide a higher degree of protection for in situ TiB2p/A356 composite in a chloride-containing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yi HZ, Ma NH, Li XF, Zhang YJ, Wang HW (2006) Mater Sci Eng A 419:12

    Article  Google Scholar 

  2. Mandal A, Chakraborty M, Murty BS (2008) Mater Sci Eng A 489:220

    Article  Google Scholar 

  3. Lakshmi S, Lu L, Gupta M (1998) J Mater Process Technol 73:160

    Article  Google Scholar 

  4. Zhang YJ, Ma NH, Wang HW, Le YK, Li SC (2005) Scr Mater 53:1171

    Article  CAS  Google Scholar 

  5. Lu L, Lai MO, Chen FL (1997) Acta Mater 45:4297

    Article  CAS  Google Scholar 

  6. Yi HZ, Ma NH, Zhang YJ, Li XF, Wang HW (2006) Scr Mater 54:1093

    Article  CAS  Google Scholar 

  7. Tee KL, Lü L, Lai MO (2003) Mater Sci Eng A 339:227

    Article  Google Scholar 

  8. Kennedy AR, Karantzalis AE, Wyatt AM (1999) J Mater Sci 34:933. doi:https://doi.org/10.1023/A:1004519306186

    Article  CAS  Google Scholar 

  9. Ceng L, Zhang J (2001) J Mater Sci Technol 17:675

    Google Scholar 

  10. Sekhawat DS, Chakraborty M, Chatterjee UK (2005) Mater Sci Forum 475–479:449

    Article  Google Scholar 

  11. Shahid M (1997) J Mater Sci 32:3775. doi:https://doi.org/10.1023/A:1018623623116

    Article  CAS  Google Scholar 

  12. Picas JA, Forn A, Rupérez E, Baile MT, Martín E (2007) Plasma Process Polym 4:S579

    Article  Google Scholar 

  13. Cheng BR, Hao L (2000) Met Finish 98(5):48

    Article  CAS  Google Scholar 

  14. Snogan F, Blanc C, Mankowski G, Pébère N (2002) Surf Coat Technol 154(1):94

    Article  CAS  Google Scholar 

  15. Zuo Y, Zhao PH, Zhao JM (2003) Surf Coat Technol 166:237

    Article  CAS  Google Scholar 

  16. Yu X, Cao C, Yao Z (2000) Mater Sci Lett 19:1907

    Article  CAS  Google Scholar 

  17. Creus J, Brezault F, Rebere C, Gadouleau M (2006) Surf Coat Technol 200:4636

    Article  CAS  Google Scholar 

  18. Kumar S, Subramanya Sarma V, Murty BS (2008) Mater Sci Eng A 476:333

    Article  Google Scholar 

  19. Shyu JZ, Otto K, Watkins WLH, Graham GW, Belitz RK, Gandhi HS (1988) J Catal 114:23

    Article  CAS  Google Scholar 

  20. Yu XW, Li GQ (2004) J Alloys Compd 364:193

    Article  CAS  Google Scholar 

  21. Pardo A, Merino MC, Arrabal R, Viejo F, Muñoz JA (2007) Appl Surf Sci 253:3334

    Article  CAS  Google Scholar 

  22. Arnott DR, Ryan NE, Hinton BRW, Sexton BA, Hughes AE (1985) Appl Surf Sci 22–23:236

    Google Scholar 

  23. Aldykiewicz AJ, Davenport AJ, Isaacs HS (1996) J Electrochem Soc 143:147

    Article  CAS  Google Scholar 

  24. Gao YZ (1985) Surface treatment of aluminum alloys. Metallurgy Industry Press, Beijing (in Chinese)

  25. Davenport AJ, Isaacs HS, Kendig MW (1991) Corros Sci 32:653

    Article  CAS  Google Scholar 

  26. Johnson BY, Edington J, O’Keefe MJ (2003) Mater Sci Eng A 361:225

    Article  Google Scholar 

  27. Li GQ, Li D, Li JQ, Guo BL, Peng MX (2001) J Chin Soc Corros Prot 21:150 (in Chinese)

    CAS  Google Scholar 

  28. Li FB, Newman RC, Thompson GE (1997) Electrochim Acta 42:2455

    Article  CAS  Google Scholar 

  29. Jone DA (1992) In: Johnstone D (ed) Principles and prevention of corrosion. Macmillan, New York

    Google Scholar 

  30. Duan HP, Du KQ, Yan CW, Wang FH (2006) Electrochim Acta 51:2898

    Article  CAS  Google Scholar 

  31. Guo HF, An MZ (2005) Appl Surf Sci 246:229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haowei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Li, X., Chen, D. et al. Enhanced corrosion resistance of discontinuous anodic film on in situ TiB2p/A356 composite by cerium electrolysis treatment. J Mater Sci 44, 786–793 (2009). https://doi.org/10.1007/s10853-008-3133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3133-9

Keywords

Navigation