Skip to main content
Log in

Effect of reverse and cyclic shear on the work-hardening of AISI 430 stainless steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sheet metal forming commonly involves various processing steps leading to complex strain paths. The work hardening of the metal under these circumstances is different from that observed for monotonic straining. The effect of the strain path on the hardening of materials is usually studied through sequences of standard mechanical tests, and the shear test is especially well adapted to such studies in sheet forming. Shear straining covering Bauschinger and cyclic strain paths were used in the analysis of the hardening of AISI 430 stainless steel sheets. The tests were conducted at 0°RD, 45°RD, and 90°RD (Rolling Direction) and for three effective strain amplitudes. The results indicate that the material presents Bauschinger effects and strain hardening transients that are sensitive to the testing direction. In addition, the cyclic straining leads to an oscillating stress pattern for the forward and reverse shearing cycles, which depends on the deformation amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nesterova EV, Bacroix B, Teodosiu (2001) Mater Sci Eng A 309–310:495. doi:https://doi.org/10.1016/S0921-5093(00)01639-7

    Article  Google Scholar 

  2. Dejmal I, Tirosh J, Shirizly A, Rubinsky L (2002) Int J Mech Sci 44:1245. doi:https://doi.org/10.1016/S0020-7403(02)00019-X

    Article  Google Scholar 

  3. Kobayashi S, Oh SI, Altan T (1988) Metal forming and the finite-element method. Oxford University Press, New York, USA

    Google Scholar 

  4. Lim TC, Ramakrishna S, Shang HM (1999) J Mater Process Technol 30:495. doi:https://doi.org/10.1016/S1359-8368(99)00015-3

    Google Scholar 

  5. Karthik V, Comstock RJ Jr, Hershberger DL, Wagoner RH (2002) J Mater Process Technol 121:350. doi:https://doi.org/10.1016/S0924-0136(01)01219-5

    Article  CAS  Google Scholar 

  6. Doyle LE, Morris JL, Leach JL, Schrader GF (1978) Processos de Fabricacão e Materiais para Engenheiros, 2nd edn. Edgard Blücher, São Paulo, Brazil

    Google Scholar 

  7. Nakazima K, Kikuma T, Hasuka K (1968) Yamata Tech Rep 264:141

    Google Scholar 

  8. Gosh AK, Hecker SS, Keeler SP (1984) In: Dieter GE (ed) Workability testing techniques. American Society for Metal, Metals Park, London, England

  9. Arrieux R (1997) J Mater Process Technol 64:25. doi:https://doi.org/10.1016/S0924-0136(96)02550-2

    Article  Google Scholar 

  10. Kuroda M, Tvergaard V (2000) Int J Mech Sci 42:867. doi:https://doi.org/10.1016/S0020-7403(99)00029-6

    Article  Google Scholar 

  11. Barlat F, Ferreira Duarte JM, Gracio JJ, Lopes AB, Rauch EF (2003) Int J Plast 19:1215. doi:https://doi.org/10.1016/S0749-6419(02)00020-7

    Article  CAS  Google Scholar 

  12. Wilson DV, Zandrahimi M, Roberts WT (1990) Metall Mater 38:215. doi:https://doi.org/10.1016/0956-7151(90)90051-H

    Article  CAS  Google Scholar 

  13. Haddadi H, Bouvier S, Banu M, Maier C, Teodosiu C (2006) Int J Plast 22:2226. doi:https://doi.org/10.1016/j.ijplas.2006.03.010

    Article  Google Scholar 

  14. Côrrea ECS, Aguilar MTP, Cetlin PR (2000) J Mater Sci Lett 779:781. doi:https://doi.org/10.1023/A:1006768706054

    Google Scholar 

  15. Mazilkin AA, Straumal BB, Protasova SG, Dobatkin SV, Baretzky B (2008) J Mater Sci 3800:3805. doi:https://doi.org/10.1007/s.10853-007-2222-5

    Google Scholar 

  16. Schmitt JH, Aernoudt E, Baudelet B (1985) Mater Sci Eng A 75:13

    Article  Google Scholar 

  17. Rauch EF, G’Sell C (1989) Mater Sci Eng A 111:71. doi:https://doi.org/10.1016/0921-5093(89)90199-8

    Article  Google Scholar 

  18. Rauch EF, Gracio JJ, Barlat F (2007) Acta Mater 55:2939. doi:https://doi.org/10.1016/j.actamat.2007.01.003

    Article  CAS  Google Scholar 

  19. Vincze G, Rauch EF, Gracio JJ, Barlat F, Lopes AB (2005) Acta Mater 53:1005. doi:https://doi.org/10.1016/j.actamat.2004.10.046

    Article  CAS  Google Scholar 

  20. Lopes AB, Rauch EF, Gracio JJ (1999) Acta Mater 47:859. doi:https://doi.org/10.1016/S1359-6454(98)00417-0

    Article  CAS  Google Scholar 

  21. Wilson DV, Bate PS (1994) Acta Metall Mater 42:1099. doi:https://doi.org/10.1016/0956-7151(94)90127-9

    Article  CAS  Google Scholar 

  22. Sillekens WH, Dautzenberg JH, Kals J (1991) Proc ‘International Institution for Production Research—CIRP’, vol 40, p 255

  23. Corrêa ECS, Aguilar MTP, Silva EMP, Cetlin PR (2003) J Mater Process Technol 142:282. doi:https://doi.org/10.1016/S0924-0136(03)00575-2

    Article  Google Scholar 

  24. Jia WP, Fernandes JV (2003) Mater Sci Eng A 348:133. doi:https://doi.org/10.1016/S0921-5093(02)00630-5

    Article  Google Scholar 

  25. Boger RK, Wagoner RH, Barlat F, Lee MG, Chung K (2005) Int J Plast 21:2319. doi:https://doi.org/10.1016/j.ijplas.2004.12.002

    Article  CAS  Google Scholar 

  26. Chung JH, Lee DN (1993) J Mater Sci 4704:4712. doi:https://doi.org/10.1007/BF00414261

    Google Scholar 

  27. Rauch EF (1992) Solid State Phenom 23:317

    Article  Google Scholar 

  28. Bouvier S, Haddadi H, Levée P, Teodosiu C (2006) J Mater Process Technol 172:96. doi:https://doi.org/10.1016/j.jmatprotec.2005.09.003

    Article  Google Scholar 

  29. Hu Z (1994) Acta Metall Mater 42:3481. doi:https://doi.org/10.1016/0956-7151(94)90480-4

    Article  CAS  Google Scholar 

  30. Zandrahimi M, Platias S, Price D, Barrett D, Bate PS, Roberts WT, Wilson DV (1989) Metall Mater Trans A 20:2471

    Article  Google Scholar 

  31. Boger RK (2006) Non-monotonic strain hardening and its constitutive representation. Ph.D. thesis, Ohio State University, Ohio

  32. Pinheiro IP, Barbosa R, Cetlin PR (2006) ISIJ Int 46:734

    Article  CAS  Google Scholar 

  33. Pinheiro IP, Barbosa R, Cetlin PR (2007) Mater Sci Eng A 458:136. doi:https://doi.org/10.1016/j.msea.2006.12.046

    Article  Google Scholar 

  34. Dirras GF, Duval JL, Swiatnicki W (1999) Mater Sci Eng A 263:85. doi:https://doi.org/10.1016/S0921-5093(98)01082-X

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support for this research by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Roberto Cetlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, W., Corrêa, E.C.S., Campos, H.B. et al. Effect of reverse and cyclic shear on the work-hardening of AISI 430 stainless steel. J Mater Sci 44, 441–448 (2009). https://doi.org/10.1007/s10853-008-3121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3121-0

Keywords

Navigation