Skip to main content
Log in

Structural transitions during aluminum leaching of NiAl3 phase in a Raney Ni–Al alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Structural transitions during aluminum leaching of the NiAl3 phase in a Raney nickel–aluminum alloy have been investigated by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and X-ray energy dispersive spectroscopy. We observed that NiAl3 grains cracked into crystalline nano-fragments at the initial stage of leaching. A possible mechanism for the grain fragmentation was proposed based on the crystal structure of NiAl3. We discovered that fcc nickel, the known active phase, coexisted with another active nickel phase with an orthorhombic structure in the Raney-Ni catalyst. The orthorhombic nickel phase was generated directly from its source phase, NiAl3, and further transformed to the fcc nickel phase during aluminum leaching

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raney M (1925) US Patent 1,563,787

  2. Raney M (1927) US Patent 1,628,191

  3. Fasman AB, Mikhailenko SD, Maksimova NA, Ikhsanov ZhA (1983) Appl Catal 6:1. doi:https://doi.org/10.1016/0166-9834(83)80182-1

    Article  CAS  Google Scholar 

  4. Fouilloux P (1983) Appl Catal 8:1. doi:https://doi.org/10.1016/0166-9834(83)80051-7

    Article  CAS  Google Scholar 

  5. Hu H, Xie F, Pei Y, Qiao M, Yan S, He H et al (2006) J Catal 237:143. doi:https://doi.org/10.1016/j.jcat.2005.11.001

    Article  CAS  Google Scholar 

  6. Freel J, Pieters WJM, Anderson RB (1970) J Catal 16:281. doi:https://doi.org/10.1016/0021-9517(70)90224-1

    Article  CAS  Google Scholar 

  7. Kordulis C, Doumain B, Daman JP, Masson J, Dallons JL, Delannay F (1985) Bull Soc Chim Belg 1:371

    Google Scholar 

  8. Freel J, Pieters WJM, Anderson RB (1969) J Catal 14:247. doi:https://doi.org/10.1016/0021-9517(69)90432-1

    Article  CAS  Google Scholar 

  9. Lieber E, Morritz FL (1953) Adv Catal 5:417. doi:https://doi.org/10.1016/S0360-0564(08)60647-1

    CAS  Google Scholar 

  10. Gros J, Hamar-Thibault S, Joud JC (1988) Surf Interface Anal 11:611. doi:https://doi.org/10.1002/sia.740111206

    Article  CAS  Google Scholar 

  11. Delannay F (1986) React Solids 2:235. doi:https://doi.org/10.1016/0168-7336(86)80086-9

    Article  CAS  Google Scholar 

  12. Hamar-Thibault S, Thibault J, Joud JC (1992) Z Metallk 83:258

    CAS  Google Scholar 

  13. Wang R, Lu Z, Ko T (2001) J Mater Sci 36:5645

    Google Scholar 

  14. Bakker ML, Young DJ, Wainwright MS (1988) J Mater Sci 23:3921. doi:https://doi.org/10.1007/BF01106814

    Article  CAS  Google Scholar 

  15. Colin P, Hamar-Thibault S, Joud JC (1992) J Mater Sci 27:2326. doi:https://doi.org/10.1007/BF01105039

    Article  CAS  Google Scholar 

  16. Devred F, Hoffer BW, Sloof WG, Kooyman PJ, van Langeveld AD, Zandbergen HW (2003) Appl Catal A 244:291. doi:https://doi.org/10.1016/S0926-860X(02)00601-4

    Article  CAS  Google Scholar 

  17. Lu Z, Wang R, Ko T, Chen H, Mu X, Zong B (1997) Chin J Catal 18:110

    CAS  Google Scholar 

  18. Sane S, Bonnier JM, Damon JP, Masson J (1984) Appl Catal 9:69. doi:https://doi.org/10.1016/0166-9834(84)80039-1

    Article  CAS  Google Scholar 

  19. Khaidar M, Allibert C, Driole J, Germi P (1982) Mater Res Bull 17:329. doi:https://doi.org/10.1016/0025-5408(82)90081-2

    Article  CAS  Google Scholar 

  20. Hamar-Thibault S, Koscielski T, Damon JP, Masson J (1989) J Catal 56:57

    CAS  Google Scholar 

  21. Pearson WB (1972) The crystal chemistry and physics of metals and alloys. Wiley-Interscience, New York, p 14

    Google Scholar 

  22. Bradley AJ, Taylor A (1937) Proc Roy Soc (Lond) A 159:56

    Article  CAS  Google Scholar 

  23. Bradley AJ, Taylor A (1937) Philos Mag 23:1049

    Article  CAS  Google Scholar 

  24. Chen H, Wang R (2008) Nucl Instrum Methods B 266:1062. doi:https://doi.org/10.1016/j.nimb.2008.02.030

    Article  CAS  Google Scholar 

  25. Robertson SD, Freel J, Anderson RB (1972) J Catal 24:130. doi:https://doi.org/10.1016/0021-9517(72)90017-6

    Article  CAS  Google Scholar 

  26. Sassoulas R, Trambouze Y (1964) Bull Soc Chim Fr 5:985

    Google Scholar 

  27. Balandin AA (1958) Adv Catal 10:96. doi:https://doi.org/10.1016/S0360-0564(08)60405-8

    CAS  Google Scholar 

  28. Hu H, Qiao M, Wang S, Fan K, Li H, Zong B et al (2004) J Catal 221:612. doi:https://doi.org/10.1016/j.jcat.2003.09.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported partially by funding from the Chinese Institute of Petroleum Processing Research. We thank Dr. Baoning Zong for providing experimental materials for this study and Professors Enze Min, Wanzhen Lu and Drs. Baoning Zong, Xuhong Mu for fruitful and enlightening discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Chen, H., Lu, Z. et al. Structural transitions during aluminum leaching of NiAl3 phase in a Raney Ni–Al alloy. J Mater Sci 43, 5712–5719 (2008). https://doi.org/10.1007/s10853-008-2901-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2901-x

Keywords

Navigation