Skip to main content
Log in

Mechanical properties and corrosion behaviour of ultrafine-grained AA6082 produced by equal-channel angular pressing

  • Ultrafine-Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties and corrosion behaviour of AA6082 with ultrafine-grained (UFG) microstructure were investigated. The material was processed by equal-channel angular pressing (ECAP) up to eight extrusions at room temperature in a 90°-die with active backpressure. Besides the peak-aged temper, which provides maximum strengths and strongly reduced ductility, the solution heat treated condition was considered as well. Combined with post-ECAP aging, an optimum of high strength, ductility and impact toughness was achieved. The corrosion investigations and the examination of the corrosion damage of the UFG-materials show higher pitting corrosion resistance compared to the unprocessed material. The optimised condition was used for the production of screw prototypes which showed appreciable higher strength and ductility compared to the identically manufactured screws from the CG counterpart. Such materials are potential candidates to be used for several engineering applications such as high strength screws even at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Segal VM, Reznikov AE, Drobyshevskiy AE, Kopylov VI (1981) Russ Metall 7 (English translation)

  2. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi:https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  CAS  Google Scholar 

  3. Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Metall Mater Trans A Phys Metall Mater Sci 31:691. doi:https://doi.org/10.1007/s11661-000-0011-8

    Article  Google Scholar 

  4. Horita Z, Ohashi K, Fujita T, Kaneko K, Langdon TG (2005) Adv Mater 17:1599. doi:https://doi.org/10.1002/adma.200500069

    Article  CAS  Google Scholar 

  5. Liu M, Roven HJ, Yu Y, Werenskiold JC (2008) Mater Sci Eng A 483–484:59. doi:https://doi.org/10.1016/j.msea.2006.09.144

    Article  Google Scholar 

  6. Roven HJ, Liu M, Werenskiold JC (2008) Mater Sci Eng A 483–484:54. doi:https://doi.org/10.1016/j.msea.2006.09.142

    Article  Google Scholar 

  7. Ferrasse S, Segal VM, Alford F, Kardokus J, Strothers S (in press) Mater Sci Eng A

  8. Friedrich C (2004) Reliable lightweight fastening of magnesium components in automotive applications. In: SAE World Congress & Exhibition, SAE Technical Papers, Detroit, MI, March 2004

  9. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi:https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  10. Vinogradov A, Mimaki T, Hashimoto S, Valiev R (1999) Scr Mater 41:319. doi:https://doi.org/10.1016/S1359-6462(99)00170-0

    Article  CAS  Google Scholar 

  11. Balyanov A, Kutnyakova J, Amirkhanova NA, Stolyarov VV, Valiev RZ, Liao XZ et al (2004) Scr Mater 51:225. doi:https://doi.org/10.1016/j.scriptamat.2004.04.011

    Article  CAS  Google Scholar 

  12. Akiyama E, Zhang Z, Watanabe Y, Tsuzaki K (2007) J Solid State Electrochem 1–6

  13. Hadzima B, Janecek M, Hellmig RJ, Kutnyakova Y, Estrin Y (2006) Mater Sci Forum 503–504:883

    Article  Google Scholar 

  14. Vinogradov A, Miyamoto H, Mimaki T, Hashimoto S (2002) Ann Chim 27:65. doi:https://doi.org/10.1016/S0151-9107(02)80008-3

    Article  CAS  Google Scholar 

  15. Chung M-K, Choi Y-S, Kim J-G, Kim Y-M, Lee J-C (2004) Mater Sci Eng A 366:282. doi:https://doi.org/10.1016/j.msea.2003.08.056

    Article  Google Scholar 

  16. Son IJ, Nakano H, Oue S, Kobayashi S, Fukushima H, Horita Z (2006) Mater Trans 47:1163. doi:https://doi.org/10.2320/matertrans.47.1163

    Article  CAS  Google Scholar 

  17. Wei W, Wei KX, Du QB (2007) Mater Sci Eng A 454–455:536. doi:https://doi.org/10.1016/j.msea.2006.11.063

    Article  Google Scholar 

  18. Segal VM (2004) Mater Sci Eng A 386:269

    Article  Google Scholar 

  19. Furukawa M, Horita Z, Langdon TG (2002) Mater Sci Eng A 332:97. doi:https://doi.org/10.1016/S0921-5093(01)01716-6

    Article  Google Scholar 

  20. Barber RE, Dudo T, Yasskin PB, Hartwig KT (2004) Scr Mater 51:373. doi:https://doi.org/10.1016/j.scriptamat.2004.05.022

    Article  CAS  Google Scholar 

  21. Cheng S, Zhao YH, Zhu YT, Ma E (2007) Acta Mater 55:5822. doi:https://doi.org/10.1016/j.actamat.2007.06.043

    Article  CAS  Google Scholar 

  22. Wang YM, Ma E, Valiev RZ, Zhu YT (2004) Adv Mater 16:328. doi:https://doi.org/10.1002/adma.200305679

    Article  CAS  Google Scholar 

  23. Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT (2006) Adv Mater 18:2280. doi:https://doi.org/10.1002/adma.200600310

    Article  CAS  Google Scholar 

  24. Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT (2004) Acta Mater 52:4589. doi:https://doi.org/10.1016/j.actamat.2004.06.017

    Article  CAS  Google Scholar 

  25. Kim WJ, Kim JK, Kim HK, Park JW, Jeong YH (2008) J Alloy Compd 450:222

    Article  CAS  Google Scholar 

  26. Kim JK, Jeong HG, Hong SI, Kim YS, Kim WJ (2001) Scr Mater 45:901. doi:https://doi.org/10.1016/S1359-6462(01)01109-5

    Article  CAS  Google Scholar 

  27. Kim JK, Kim HK, Park JW, Kim WJ (2005) Scr Mater 53:1207. doi:https://doi.org/10.1016/j.scriptamat.2005.06.014

    Article  CAS  Google Scholar 

  28. Kim WJ, Chung CS, Ma DS, Hong SI, Kim HK (2003) Scr Mater 49:333. doi:https://doi.org/10.1016/S1359-6462(03)00260-4

    Article  CAS  Google Scholar 

  29. Hockauf M, Meyer LW, Zillmann B, Hietschold M, Schulze S, Krüger L. Mater Sci Eng A (accepted for publication)

  30. Hockauf M, Meyer LW, Halle T, Kuprin C, Hietschold M, Schulze S et al (2006) Int J Mater Res 97:1392

    Article  CAS  Google Scholar 

  31. Matsuda K, Naoi T, Fujii K, Uetani Y, Sato T, Kamio A et al (1999) Mater Sci Eng A 262:232. doi:https://doi.org/10.1016/S0921-5093(98)00962-9

    Article  Google Scholar 

  32. Chakrabarti DJ, Laughlin DE (2004) Prog Mater Sci 49:389. doi:https://doi.org/10.1016/S0079-6425(03)00031-8

    Article  CAS  Google Scholar 

  33. Kim WJ, Wang JY (2007) Mater Sci Eng A 464:23. doi:https://doi.org/10.1016/j.msea.2007.03.074

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for supporting this work carried out within the framework of Sonderforschungsbereich 692 (Collaborative Research Center; A2, B2). The authors would like to thank Dr. Harry Podlesak for performing the STEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hockauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hockauf, M., Meyer, L.W., Nickel, D. et al. Mechanical properties and corrosion behaviour of ultrafine-grained AA6082 produced by equal-channel angular pressing. J Mater Sci 43, 7409–7417 (2008). https://doi.org/10.1007/s10853-008-2724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2724-9

Keywords

Navigation