Skip to main content
Log in

Improved analytical model for isochronal transformation kinetics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Analytical model for isochronal phase transformation kinetics attracts much attention for its advantages and importance. However, the simple but exact analytical formula of the isochronal transformation is unavailable because of the so-called temperature integral, and the asymptotic expansions have to be adopted to obtain approximate results. Here a generally used asymptotic expansion was proved divergent, and a reasonable approximation was proposed to obtain a more precise description as compared numerically to the previous one. Based on the proposed approximation, an analytical model for isochronal transformation kinetics was developed, which was proved more effective than the previous analytical model when the transformation occurs in a narrow temperature range and exhibited an identical form to the previous model when in a wide temperature interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.  1
Fig.  2
Fig.  3

Similar content being viewed by others

References

  1. Michaelsen C, Dahms M (1996) Thermochim Acta 288:9. doi:https://doi.org/10.1016/S0040-6031(96)03039-0

    Article  CAS  Google Scholar 

  2. Kempen ATW, Sommer F, Mittemeijer EJ (2002) Acta Mater 50:1319. doi:https://doi.org/10.1016/S1359-6454(01)00428-1

    Article  CAS  Google Scholar 

  3. Liu F, Sommer F, Mittemeijer EJ (2004) Acta Mater 52:3207. doi:https://doi.org/10.1016/j.actamat.2004.03.020

    Article  CAS  Google Scholar 

  4. Avrami M (1939) J Chem Phys 7:1103. doi:https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  5. Avrami M (1940) J Chem Phys 8:212. doi:https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  6. Avrami M (1941) J Chem Phys 9:177. doi:https://doi.org/10.1063/1.1750872

    Article  CAS  Google Scholar 

  7. Johnson WA, Mehl RF (1939) Trans AIME 135:416

    Google Scholar 

  8. Kolmogorov AN (1937) Izv Akad Nauk SSSR, Ser Matem 3:355

    Google Scholar 

  9. Mittemeijer EJ (1992) J Mater Sci 27:3977. doi:https://doi.org/10.1007/BF01105093

    Article  CAS  Google Scholar 

  10. Starink MJ (2003) Thermochim Acta 404:163. doi:https://doi.org/10.1016/S0040-6031(03)00144-8

    Article  CAS  Google Scholar 

  11. Lyon RE (1997) Thermochim Acta 297:117. doi:https://doi.org/10.1016/S0040-6031(97)00158-5

    Article  CAS  Google Scholar 

  12. Vázquez J, Wagner C, Villares P, Jiménez-Garay R (1996) Acta Mater 44:4807. doi:https://doi.org/10.1016/S1359-6454(96)00127-9

    Article  Google Scholar 

  13. Vázquez J, García-G.Barreda D, López-Alemany PL, Villares P, Jiménez-Garay R (2006) Mater Chem Phys 96:107. doi:https://doi.org/10.1016/j.matchemphys.2005.06.050

    Article  Google Scholar 

  14. Ruitenberg G, Woldt E, Petford-Long AK (2001) Thermochim Acta 378:97. doi:https://doi.org/10.1016/S0040-6031(01)00584-6

    Article  CAS  Google Scholar 

  15. Kempen ATW, Sommer F, Mittemeijer EJ (2002) J Mater Sci 37:1321. doi:https://doi.org/10.1023/A:1014556109351

    Article  CAS  Google Scholar 

  16. Liu F, Sommer F, Mittemeijer EJ (2004) J Mater Sci 39:1621. doi:https://doi.org/10.1023/B:JMSC.0000016161.79365.69

    Article  CAS  Google Scholar 

  17. Farjas J, Roura P (2006) Acta Mater 54:5573. doi:https://doi.org/10.1016/j.actamat.2006.07.037

    Article  CAS  Google Scholar 

  18. Kempen ATW, Sommer F, Mittemeijer EJ (2002) Acta Mater 50:3545. doi:https://doi.org/10.1016/S1359-6454(02)00149-0

    Article  CAS  Google Scholar 

  19. Liu F, Sommer F, Mittemeijer EJ (2007) J Mater Sci 42:573. doi:https://doi.org/10.1007/s10853-006-0802-4

    Article  CAS  Google Scholar 

  20. Pineda E, Crespo D (1999) Phys Rev B 60:3104. doi:https://doi.org/10.1103/PhysRevB.60.3104

    Article  CAS  Google Scholar 

  21. Kooi BJ (2004) Phys Rev B 70:224108. doi:https://doi.org/10.1103/PhysRevB.70.224108

    Article  Google Scholar 

  22. Kooi BJ (2006) Phys Rev B 73:054103. doi:https://doi.org/10.1103/PhysRevB.73.054103

    Article  Google Scholar 

  23. Borrego A, González-Docel G (1998) Mater Sci Eng A 245:10. doi:https://doi.org/10.1016/S0921-5093(97)00706-5

    Article  Google Scholar 

  24. Varschavsky A, Donoso E (2003) Mater Lett 57:1266. doi:https://doi.org/10.1016/S0167-577X(02)00970-9

    Article  CAS  Google Scholar 

  25. Claudio D, Gonzalez-Hernandez J, Licea O, Laine B, Prokhorov E, Trapaga G (2006) J Non-Cryst Solids 352:51. doi:https://doi.org/10.1016/j.jnoncrysol.2005.11.007

    Article  CAS  Google Scholar 

  26. Vyazovkin S, Dollimore D (1996) J Chem Inf Comput Sci 36:42. doi:https://doi.org/10.1021/ci950062m

    Article  CAS  Google Scholar 

  27. Henderson DW (1979) J Non-Cryst Solids 30:301. doi:https://doi.org/10.1016/0022-3093(79)90169-8

    Article  CAS  Google Scholar 

  28. Henderson DW (1979) J Thermal Anal 15:325. doi:https://doi.org/10.1007/BF01903656

    Article  CAS  Google Scholar 

  29. De Bruijn TJW, De Jong WA, Van Den Berg PJ (1981) Thermochim Acta 45:315. doi:https://doi.org/10.1016/0040-6031(81)85091-5

    Article  Google Scholar 

  30. Málek J (1995) Thermochim Acta 267:61. doi:https://doi.org/10.1016/0040-6031(95)02466-2

    Article  Google Scholar 

  31. Apostol Tom M (1974) Mathematical analysis, 2nd edn, Chaps. 8 and 9. Addison-Wesley

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (No. 50401003), the Natural Science Foundation of Tianjin City (No. 07JCZDJC01200), Fok Ying Tong Education Foundation and Program for New Century Excellent Talents in University for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchang Liu.

Appendix A: Deducing the expression for the isochronal transformation kinetics model

Appendix A: Deducing the expression for the isochronal transformation kinetics model

The extend volume Eq. 12 can be calculated upon Eq. 22:

$$ \begin{aligned} & V^{\rm e}\left[{T(t)}\right] = \frac{VgN_0 \upsilon _0 ^{d/m}}{\Upphi ^{(d/m){+1}}}\, \hbox{exp}\, \left({-\frac{(d/m)Q_{\rm G}} {RT(t)}} \right)\left({\frac{RT(t)^{2}}{Q_{\rm G}}} \right)^{d/m}\cdot \int\limits_{T_0 }^{T(t)}{\, \hbox{exp}\, \left({-\frac{Q_{\rm N}}{RT(t)}} \right)\left\{ {1-\, \hbox{exp}\, \left[{\frac{Q_{\rm G} [T(\tau) -T(t)]}{RT(t)^{2}}}\right]} \right\}^{d/m}{d}T(\tau )} \\ & = \frac{VgN_0 \upsilon _0 ^{d/m}}{\Upphi ^{(d/m){+1}}}\, \hbox{exp}\, \left({-\frac{Q_{\rm N} +(d/m)Q_{\rm G}}{RT(t)}} \right)\left({\frac{RT(t)^{2}}{Q_{\rm G} }} \right)^{d/m}\cdot \int\limits_{T_0 }^{T(t)} {\, \hbox{exp}\, \left[{\frac{Q_{\rm N} [T(\tau )-T(t)]}{RT(t)^{2}}}\right]\left\{ {1-\, \hbox{exp}\, \left[{\frac{Q_{\rm G} [T(\tau )-T(t)]}{RT(t)^{2}}}\right]} \right\}^{d/m}{d}T(\tau )}\\ \end{aligned} $$
(A1)

The power term in (A1) can be expanded as binomial series [14, 31]:

$$ \left\{ {1-\hbox{exp}\, \left[{\frac{Q_{\rm G} [T(\tau) -T(t)]}{RT(t)^{2}}}\right]} \right\}^{d/m} =\sum_{i=0}^\infty {\left({{\begin{array}{l} d/m \\ i \\ \end{array} }} \right)(-1)^{i}\, \hbox{exp}\, \left[{\frac{iQ_{\rm G} [T(\tau )-T(t)]}{RT(t)^{2}}}\right]} $$
(A2)

where \(\left(\begin{array}{l} d/m\\ i\\ \end{array}\right)=\frac{\prod\limits_{j=0}^{i-1}\left((d/m)-j\right)} {i!}, \left(\begin{array}{l} d/m\\ 0\\ \end{array}\right)=1, \) is the binomial coefficients. Then the integral (A1) can be calculated as:

$$ \begin{aligned} & V^{\rm e}\left[{T(t)}\right]= \frac{VgN_0 \upsilon _0 ^{d/m}}{\Upphi ^{(d/m){+1}}}\, \hbox{exp}\, \left({-\frac{Q_{\rm N} +(d/m)Q_{\rm G}} {RT(t)}} \right)\left({\frac{RT(t)^{2}}{Q_{\rm G} }} \right)^{d/m} \\ &\times \int\limits_{T_0 }^{T(t)} {\, \hbox{exp}\, \left[{\frac{Q_{\rm N} [T(\tau )-T(t)]}{RT(t)^{2}}}\right]\sum_{i=0}^\infty {\left({{\begin{array}{l} d/m \\ i \\ \end{array} }} \right)} (-1)^{i}\, \hbox{exp}\, \left[{\frac{iQ_{\rm G} [T(\tau )-T(t)]}{RT(t)^{2}}}\right]} {d}T(\tau ) \\ & = \frac{VgN_0 \upsilon _0 ^{d/m}}{\Upphi ^{(d/m){+1}}}\, \hbox{exp}\, \left({-\frac{Q_{\rm N} +(d/m)Q_{\rm G}}{RT(t)}} \right)\left({\frac{RT(t)^{2}}{Q_{\rm G}}} \right)^{d/m}\sum_{i=0}^\infty {\left({{\begin{array}{l} d/m \\ i \\ \end{array} }} \right)} (-1)^{i}\int\limits_{T_0 }^{T(t)} {\, \hbox{exp}\, \left[{\frac{\left({Q_{\rm N} +iQ_{\rm G}} \right)[T(\tau) -T(t)]}{RT(t)^{2}}}\right]{d}T(\tau )} \\ & = \frac{VgN_0 Q_{\rm G}\upsilon_0^{d/m}}{\Upphi ^{(d/m){+1}}}\, \hbox{exp}\, \left({-\frac{Q_{\rm N} +(d/m)Q_{\rm G} }{RT(t)}} \right)\left({\frac{RT(t)^{2}}{Q_{\rm G}}} \right)^{(d/m){+1}}\sum_{i=0}^\infty {\left({{\begin{array}{l} d/m \\ i \\ \end{array} }} \right)} \frac{(-1)^{i}}{Q_{\rm N} +iQ_{\rm G}}\left\{ {1-\, \hbox{exp}\, \left[{\frac{\left({Q_{\rm N} +iQ_{\rm G} } \right)[T_0 -T(t)]}{RT(t)^{2}}}\right]} \right\} \\ & = \frac{VgN_0 \upsilon _0 ^{d/m}}{Q_{\rm G}{}^{d/m}}\, \hbox{exp}\, \left({-\frac{Q_{\rm N} +(d/m)Q_{\rm G}}{RT(t)}} \right)\left({\frac{RT(t)^{2}}{\Upphi }} \right)^{(d/m){+1}}\psi \left({T_0 , T(t), d/m} \right) \\ \end{aligned} $$
(A3)

where

$$ \psi \left({T_0 , T(t), d/m} \right)=\sum_{i=0}^\infty {\left({{\begin{array}{l} d/m \\ i \\ \end{array} }} \right)} \frac{(-1)^{i}}{Q_{\rm N} +iQ_{\rm G}} \left\{ {1-\hbox{exp}\, \left[{\frac{\left({Q_{\rm N} +iQ_{\rm G}} \right) \left[{T_0 -T(t)}\right]}{RT(t)^{2}}}\right]} \right\} $$
(A4)

For the interface-controlled growth, d/m is integer, the binomial coefficients would be truncated at i = d/m, and then (A2) becomes:

$$ \psi \left({T_0 , T(t), d/m} \right)=\sum_{i=0}^{d/m} {\left({{\begin{array}{l} d/m \\ i \\ \end{array} }} \right)} \frac{(-1)^{i}}{Q_{\rm N} +iQ_{\rm G} } \left\{ {1-\, \hbox{exp}\, \left[\frac{\left({Q_{\rm N} +iQ_{\rm G} } \right) \left[{T_0 -T(t)}\right]}{RT(t)^{2}}\right]} \right\} $$
(A5)

For the diffusion-controlled growth, d/m is semi-integer except d/m = 2/2, and then ψ(T0, T(t), d/m) has infinite terms. However, ψ(T0, T(t), d/m) converges quickly [14]. Therefore, a reasonable approximation can be available by truncating at the primary terms. The expressions for ψ(T0, T(t), d/m) are given in Table 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Liu, Y. & Zhang, Y. Improved analytical model for isochronal transformation kinetics. J Mater Sci 43, 4876–4885 (2008). https://doi.org/10.1007/s10853-008-2709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2709-8

Keywords

Navigation