Skip to main content
Log in

Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Liquid polycarbosilane (LPCS) with a highly branched structure was characterized by fourier-transform infrared spectrometry (FT-IR) and 1H, 13C, 29Si nuclear magnetic resonance spectrometry (NMR). The LPCS was then cured and pyrolysized up to 1,600 °C under flowing argon. The structural evolution process was studied by thermogravimetric analysis and differential scanning calorimetry (TG-DSC), FT-IR, and X-ray diffraction (XRD). Hydrosilylation, dehydrocoupling, and polymerization cross-linking reactions between Si–H and C=C groups occurred at low temperatures, which mainly accounted for the high ceramic yield (70%) up to 1,400 °C. The organic groups gradually decomposed and the structure rearranged at high temperatures. The FT-IR analysis revealed that Si–CH2–Si chains, the backbone of original polymer, can be retained up to 1,200 °C. At temperatures higher than 1,200 °C, the Si–CH2–Si chains broke down and crystalline SiC began to form. The final crystalline products were β-SiC and a small amount of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goto Y, Thomas G (1995) J Mater Sci 30:2194

    Article  CAS  Google Scholar 

  2. Kroke E, Li YL, Konetschny C et al (2000) Mater Sci Eng R 26:97

    Article  Google Scholar 

  3. Yajima S, Hasegawa Y, Okamura K et al (1978) Nature 273:525

    Article  CAS  Google Scholar 

  4. Zbigniew SR (2001) J Am Ceram Soc 84:2235

    Google Scholar 

  5. Liew L, Zhang W, An L, Shah S et al (2001) Am Ceram Soc Bull 80:25

    CAS  Google Scholar 

  6. Riedel R, Kienzle A, Dressler W et al (1996) Nature 382:796

    Article  CAS  Google Scholar 

  7. An L, Riedel R, Konetachny C et al (1998) J Am Ceram Soc 81:1349

    Article  Google Scholar 

  8. Riedel R, Ruwisch LM, An L et al (1998) J Am Ceram Soc 81:3341

    Article  CAS  Google Scholar 

  9. Ramakrishnan PA, Wang YT, Balzar D et al (2001) Appl Phys Lett 78:3076

    Article  CAS  Google Scholar 

  10. Wang Y, Fan Y, Zhang L et al (2005) J Am Ceram Soc 88:3075

    Article  CAS  Google Scholar 

  11. Wang Y, Fan Y, Zhang L et al (2006) Scripta Mater 55:295

    Article  CAS  Google Scholar 

  12. Wang Y, Fei W, An L (2006) J Am Ceram Soc 89:1079

    Article  CAS  Google Scholar 

  13. Wang Y, Fei W, Fan Y et al (2006) J Mater Res 21:1625

    Article  CAS  Google Scholar 

  14. Yajima S, Hayashi J, Omori M et al (1976) Nature 261:683

    Article  CAS  Google Scholar 

  15. Takeda M, Imai Y, Ichikawa H et al (1992) Ceram Engi Sic Prog 13:209

    CAS  Google Scholar 

  16. Kriner WA (1964) J Org Chem 29:1601

    Article  CAS  Google Scholar 

  17. Schilling CL, Wesson JP, Williams TC (1983) Am Ceram Soc Bull 62:912

    CAS  Google Scholar 

  18. Birot M, Pillot JP, Dunogues J (1995) Chem Rev 95:1443

    Article  CAS  Google Scholar 

  19. Narisawa M, Kitano S, Idesaki A et al (1998) J Mater Sci 33:2663

    Article  CAS  Google Scholar 

  20. Bouillon E, Langlais F, Pailler R et al (1991) J Mater Sci 26:1333

    Article  CAS  Google Scholar 

  21. Janakiraman N, Weinmann M, Schuhmacher J et al (2002) J Am Ceram Soc 85:1807

    Article  CAS  Google Scholar 

  22. Ly HQ, Taylor R, Day RJ (2001) J Mater Sci 36:4027

    Article  CAS  Google Scholar 

  23. Fitzgerald TJ, Mortensen A (1995) J Mater Sci 30:1025

    Article  CAS  Google Scholar 

  24. Huang TH, Yu ZJ, He XM et al (2007) Chin Chem Lett 18:754

    Article  CAS  Google Scholar 

  25. Bouillon E, Langlais F, Pailler R et al (1991) J Mater Sci 26:1333

    Article  CAS  Google Scholar 

  26. Hasegawa Y, Okamura K (1986) J Mater Sci 21:321

    Article  CAS  Google Scholar 

  27. LY HQ, Taylor R, Day RJ et al (2001) J Mater Sci 36:4037

    Article  CAS  Google Scholar 

  28. Froehling PE (1993) J Inorg Organomet Polym 3:251

    Article  CAS  Google Scholar 

  29. Whitmarsh CK, Interrante LV (1991) Organometallics 10:1336

    Article  CAS  Google Scholar 

  30. Matthews S, Edirisinghe MJ, Folkes MJ (1999) Ceram Int 25:49

    Article  CAS  Google Scholar 

  31. Rushkin IL, Shen Q, Lehman SE et al (1997) Macromolecules 30:3141

    Article  CAS  Google Scholar 

  32. Michalczyk MJ, Davidson F (1994) Monatshefte für Chemie 125:895

    Article  CAS  Google Scholar 

  33. Gonon MF, Hampshire S, Dissod JP et al (1995) J Eur Ceram Soc 15:683

    Article  CAS  Google Scholar 

  34. Choong Kwet Yive NS, Corriu RJP, Leclerq D et al (1992) Chem Mater 4:141

    Article  CAS  Google Scholar 

  35. Hasegawa Y, Iimura M, Yajima S (1980) J Mater Sci 15:720

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the Natural Science Foundation of Fujian Province of China (No. E0510002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiguang Wang or Zhaoju Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhang, L., Cheng, L. et al. Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics. J Mater Sci 43, 2806–2811 (2008). https://doi.org/10.1007/s10853-008-2539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2539-8

Keywords

Navigation