Skip to main content

Advertisement

Log in

Implantable photonic crystal for reflection-based optical sensing of biodegradation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Biodegradable inverse opal (IoPPC) was synthesized from a multifunctional carboxylic acid and polyols by colloidal crystal templating. The IoPPC was prepared by infiltration of the monomer solution into interparticle voids of silica colloidal crystal template, polycondensation of the infiltrated film, and removal of the template. The synthesized IoPPC was characterized by infrared absorption, X-ray diffraction measurements, differential scanning calorimetry, and thermogravimetry/mass spectrometry analysis. In order to clarify the effect of biodegradation on the inverse opal structure and the optical reflection property, the IoPPC was implanted in subcutaneous tissue of the lower back of three mice (ICR, 10 weeks, female). After the 2 weeks implantation, fragmented samples were harvested from the implant location and investigated by scanning electron microscope observations and optical reflection measurements. It was found that the reflection peak for the harvested samples decayed from that for the sample without implantation. Such a spectral change is considered to be attributed to the deterioration of the regularity of the inverse opal structures through biodegradation. The finding of this study will serve in the development of reflection-based sensing in various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. The refractive index of silica colloids was estimated to be 1.29 from Eq. 3 with a λ max value of 597 nm (Fig. 7b). Such a small refractive index as compared with the value of crystalline silicon dioxide (1.45) is derived from the mesoporous structure of the silica colloids.

References

  1. Karageorgiou V, Kaplan D (2005) Biomaterials 26:5474

    Article  CAS  Google Scholar 

  2. Hua FJ, Kim GE, Lee JD, Son YK, Lee DS (2002) J Biomed Mater Res 63:161

    Article  CAS  Google Scholar 

  3. Harris LD, Kim BS, Mooney DJ (1998) J Biomed Mater Res 42:396

    Article  CAS  Google Scholar 

  4. Ma PX, Choi JW (2001) Tissue Eng 7:23

    Article  CAS  Google Scholar 

  5. Marshall AJ, Ratner BD (2005) AIChE J 51:1221

    Article  CAS  Google Scholar 

  6. Ratner BD, Marshall AJ (2006) Polym Prepr 47:69

    CAS  Google Scholar 

  7. Zhang K, Yan H, Stein A, Francis LF (2005) J Am Ceram Soc 88:587

    Article  CAS  Google Scholar 

  8. Zhang K, Yan H, Bell DC, Stein A, Francis LF (2003) J Biomed Mater Res 66A:860

    Article  CAS  Google Scholar 

  9. Yan H, Zhang K, Blanford CF, Francis LF, Stein A (2001) Chem Mater 13:1374

    Article  CAS  Google Scholar 

  10. Grayson CR, Choi IS, Tyler BM, Wang PP, Brem H, Cima MJ, Langer R (2003) Nat Mater 2:767

    Article  CAS  Google Scholar 

  11. Levenberg S, Langer R (2004) Curr Top Dev Biol 61:113

    Article  CAS  Google Scholar 

  12. Xia Y, Gates B, Yin Y, Lu Y (2000) Adv Mater 12:693

    Article  CAS  Google Scholar 

  13. Stein A, Schroden RC (2001) Curr Opin Solid-State Mater Sci 5:553

    Article  CAS  Google Scholar 

  14. Diop M, Lessard RA (2003) J Nonlinear Opt Quantum Opt 30:203

    CAS  Google Scholar 

  15. Lee YJ, Braun PV (2003) Adv Mater 15:563

    Article  CAS  Google Scholar 

  16. Takeoka Y, Watanabe M (2003) Adv Mater 15:199

    Article  CAS  Google Scholar 

  17. Cassagneau T, Caruso F (2002) Adv Mater 14:1629

    Article  CAS  Google Scholar 

  18. Liu J, Li G, Wu Z, An Q, Qiu Y (2007) ChemPhysChem 8:1298

    Article  CAS  Google Scholar 

  19. Fujishima M, Sakata S, Kikoku M, Ogawa D, Uchida K (2007) Chem Lett 36:1510

    Article  CAS  Google Scholar 

  20. Weissleder R (2001) Nat Biotechnol 19:316

    Article  CAS  Google Scholar 

  21. Li YY, Cunin F, Link JR, Gao T, Betts RE, Reiver SH, Chin V, Bhatia SN, Sailor MJ (2003) Science 299:2045

    Article  CAS  Google Scholar 

  22. Dupuis A, Guo N, Gao Y, Godlbout N, Lacroix S, Dubois C, Skorobogatiy M (2007) Opt Lett 32:109

    Article  CAS  Google Scholar 

  23. Ikada Y, Tsuji H (2000) Macromol Rapid Commun 21:117

    Article  CAS  Google Scholar 

  24. Yang J, Webb AR, Ameer GA (2004) Adv Mater 16:511

    Article  CAS  Google Scholar 

  25. Yang J, Webb AR, Pickerill SJ, Hageman G, Ameer GA (2006) Biomaterials 27:1889

    Article  CAS  Google Scholar 

  26. Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1993) Nature 361:26

    Article  Google Scholar 

  27. Míguez H, Meseguer F, López C, Mifsud A, Moya JS, Vázquez L (1997) Langmuir 13:6009

    Article  Google Scholar 

  28. Nagata M, Kono Y, Sakai W, Tsutsumi N (1999) Macromolecules 32:7762

    Article  CAS  Google Scholar 

  29. Schroden RC, Al-Daous M, Blanford CF, Stein A (2002) Chem Mater 14:3305

    Article  CAS  Google Scholar 

  30. Blanford CF, Schroden RC, Al-Daous M, Stein A (2001) Adv Mater 13:26

    Article  CAS  Google Scholar 

  31. Richel A, Johnson NP, McComb DW (2000) App Phys Lett 76:1816

    Article  CAS  Google Scholar 

  32. Míguez H, Meseguer F, López C, Lopez-Tejeira F, Sanchez-Dehesa J (2001) Adv Mater 13:393

    Article  Google Scholar 

  33. Busch K, John S (1998) Phys Rev E 58:3896

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Kitagawa of Kyushu University for XRD measurements and TG/MS analyses. We also acknowledge R. Moriyama of Kinki University for technical instruction in the animal experiments. This work was partly supported by a grant-in-aid for Scientific Research (No. 18500369) from the Ministry of Education, Culture, Sports, Science and Technology, and by the Circle for the Promotion of Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musashi Fujishima.

Additional information

The in vivo degradation experiment was approved by the committee on animal experiments of School of Science and Engineering, Kinki University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujishima, M., Sakata, S., Iwasaki, T. et al. Implantable photonic crystal for reflection-based optical sensing of biodegradation. J Mater Sci 43, 1890–1896 (2008). https://doi.org/10.1007/s10853-007-2419-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2419-7

Keywords