Skip to main content
Log in

Three oxidation states and atomic-scale p–n junctions in manganese perovskite oxide from hydrothermal systems

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Perovskite oxides have provided magical structural models for superconducting and colossal magnetoresistance, and the search for nano-scale and/or atomic-scale devices with particular property by specific preparations in the same systems has been extensively conducted. We present here the three oxidation states of manganese (Mn3+, Mn4+, Mn5+) in the perovskite oxide, La0.66Ca0.29K0.05MnO3, which most interestingly shows the rectifying effect as atomic-scale p–n junctions (namely FY-Junctions) of single crystals and films. The family of cubic perovskite oxides were synthesised by the so-called hydrothermal disproportionation reaction of MnO2 under the condition of strong alkali media. The new concept of the atomic-scale p–n junctions, based on the ideal rectification characteristic of the p–n junctions in the single crystal, basically originates from the structural linkages of [Mn3+–O–Mn4+–O–Mn5+], where Mn3+ \( {\left( {{\text{t}}^{{\text{3}}}_{{{\text{2g}}}} {\text{e}}^{1}_{{\text{g}}} } \right)} \) and Mn5+ \( {\left( {{\text{t}}^{{\text{2}}}_{{{\text{2g}}}} {\text{e}}^{{\text{0}}}_{{\text{g}}} } \right)} \) in octahedral symmetry serve as a donor and an acceptor, respectively, corresponding to the localized Mn4+ \( {\left( {{\text{t}}^{{\text{3}}}_{{{\text{2g}}}} {\text{e}}^{{\text{0}}}_{{\text{g}}} } \right)} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bednorz JG, Mueller KA (1986) Z Phys B-Condensed Matter 64:189

    Article  CAS  Google Scholar 

  2. von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K (1993) Phys Rev Lett 71:2331

    Article  Google Scholar 

  3. Tokura Y (2000) In: Sarma DD, Kotliar G, Tokura Y (eds) Advances in condensed matter science. vol. 2. Gordon and Breach Science Publishers, The Netherlands, pp 1–353

    Google Scholar 

  4. Renner Ch, Aeppli G, Kim B-G, Soh Y-Ah, Cheong S-W (2002) Nature 416:518

    Article  CAS  Google Scholar 

  5. Millis AJ (1998) Nature 392:147

    Article  CAS  Google Scholar 

  6. Rao CNR, Cheetham AK, Mahesh R (1996) Chem Mater 8:2421

    Article  CAS  Google Scholar 

  7. Zener C (1951) Phys Rev 82:403

    Article  CAS  Google Scholar 

  8. Schaak RE, Mallouk TE (2002) Chem Mater 14:1455

    Article  CAS  Google Scholar 

  9. Woodward PM, Cox DE, Moshopoulou E, Sleight AW, Morimoto S (2000) Phys Rev B 62:844

    Article  CAS  Google Scholar 

  10. Banach G, Temmerman WM (2004) J Phys: Condens Matter 16:S5633

    Article  CAS  Google Scholar 

  11. Alonso JA, Martinez-Lope MJ, Casais MT, Garcia-Munoz JL, Fernandez-Diaz MT (2000) Phys Rev B 61:1756

    Article  CAS  Google Scholar 

  12. Feng S, Xu R (2001) Acc Chem Res 34:239

    Article  CAS  Google Scholar 

  13. Morale J, Sanchez L, Bach S, Pereira-Ramos JP (2002) Mater Lett 56:653

    Article  Google Scholar 

  14. Feng S (1996) in Proceedings of the 2nd International Conference on Solvo-thermal Reactions, Takamatsu, (Org. Comm. Solvothermal Tech. Res. Ed. Japan, 1996) p. 118

  15. Formula La0.66Ca0.29K0.05MnO3, space group Pm−3m, a = 3.8864(4) Å, V = 58.701(10) Å3, Z = 1, D c = 5.890 g/cm3, μ = 17.731 mm−1, F(000) = 93, crystal size = 0.03 × 0.03 × 0.02 mm3. Intensity data were collected on a Rigaku RAXIS-RAPID diffractometer (Mo-Kα, graphite-monochromator) at a temperature of 293 ± 2 K. The data processing was accomplished with the PROCESS-AUTO processing program. A total of 931 reflections (5.25 < θ < 27.22°) were collected, of which 26 unique reflections (R int = 0.0750) were used. The structure was solved using the program SHELXS-97 and refined (5 parameters) using the program SHELXS-97 to R 1 (I ≥ 2σ (I)) = 0.0381 and wR 2 = 0.1052. The La, Ca and K atoms occupied the same A-site. EXYZ and EADP were used to constrain the La/Ca/K ratio to 0.66/0.29/0.05 as measured by the ICP analysis. Further details of the crystal structure investigation may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), on quoting the deposition number CSD 391346. The La, Ca and K atoms occupied the same A site.

  16. Noginov MA, Loutts GB, Noginova N, Hurling S, Kück S (2000) Phys Rev B 61:1884

    Article  CAS  Google Scholar 

  17. Bridges F, Booth CH, Anderson M, Kwei GH, Neumeier JJ, Snyder J, Mitchell J, Gardner JS, Brosha E (2001) Phys Rev B 63:214405

    Article  Google Scholar 

  18. Reiche I, Vignaud C, Champagnon B, Panczer G, Brouder C, Morin G, Sole VA, Charlet L, Menu M (2001) Am Mineralogist 86:1519

    CAS  Google Scholar 

  19. Graft M, Reisfeld R, Panczer G (2005) Modern luminescence spectroscopy of minerals and materials. Springer-Berlin Heidelberg, New York, p 191

    Google Scholar 

  20. Shaker AM (2001) Int J Chem Kinetics 33:605

    Article  CAS  Google Scholar 

  21. Jáky M, Simándi LI (1972) J Chem Soc Perkin II:1481

    Google Scholar 

  22. Deghoul F, Chermette H, Rogemond F, Moncorgé R, Stückl C, Daul C (1999) Phy Rev B 60:2404

    Article  CAS  Google Scholar 

  23. Quarez E, Roussel P, Pérez O, Leligny H, Bendraoua A, Mentré O (2004) Solid State Sci 6:931

    Article  CAS  Google Scholar 

  24. Otsuka Y, Naitoh Y, Matsumoto T, Kawai T (2003) Appl Phy Lett 82:1944

    Article  CAS  Google Scholar 

  25. Wu Ch-G, Chang S-S (2005) J Phys Chem B 109:825

    Article  CAS  Google Scholar 

  26. Ng M-K, Lee D-Ch, Yu L (2002) J Am Chem Soc 124:11862

    Article  CAS  Google Scholar 

  27. Xu D, Watt GD, Harb JN, Davis RC (2005) Nanoletters 5:571

    CAS  Google Scholar 

  28. Aviram A, Ratner MA (1974) Chem Phys Lett 29:277

    Article  CAS  Google Scholar 

  29. Kronik L, Shapira Y (1999) Surf Sci Rep 37:1

    Article  CAS  Google Scholar 

  30. Kane BE (1998) Nature 393:133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professors Martha Greenblatt, Kenneth Poeppelmeier, and Mark Ratner for helpful discussion. This work was supported by the National Nature Science Foundation of China (20631010 and 20121103) and the National High Technology Research and Development Program of China (863 Program) (No. 2006AA03Z410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouhua Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, S., Yuan, H., Shi, Z. et al. Three oxidation states and atomic-scale p–n junctions in manganese perovskite oxide from hydrothermal systems. J Mater Sci 43, 2131–2137 (2008). https://doi.org/10.1007/s10853-007-1988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1988-9

Keywords

Navigation