Skip to main content
Log in

Preparation and characterization of blends of recycled polystyrene with cassava starch

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Secondary recycling is an alternative to solve at least part of the worldwide pollution problem caused by persistence of petrochemical plastic materials in the environment. In this work we report the secondary recycling of disposable polystyrene (PS) using cassava starch (Manihot esculenta Crantz) and a natural plasticizer extracted from a palm tree of the Amazon: Buriti (Mauritia flexuosa L.) oil. 13C-NMR spectroscopy reveals incorporation of the oil in the polymer matrix. Although phase separation had occurred, SEM depicts a very good dispersion of the thermoplastic starch (TPS) in the PS matrix with distinct domains. Thermal analyses indicate smaller thermal stability of the PS/TPS blends compared to PS and that possess intermediate characteristics between the pure PS and TPS, confirmed by DRX. Kinetic study shows a lowering of the activation energy for the thermal degradation of the blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aggarwal P (1999) Thermochim Acta 340–341:195

    Article  Google Scholar 

  2. Ali MF, Siddiqui MN (2005) J Anal Appl Pyrolysis 74:282

    Article  CAS  Google Scholar 

  3. Kim J, Lee W, Lee S, Kim S, Choi M (2003) Catal Today 87:59

    Article  CAS  Google Scholar 

  4. Zhibo Z, Nishio S, Morioka Y, Ueno A, Ohkita H, Tochihara Y, Mizushima T, Kakuta N (1996) Catal Today 29:303

    Article  CAS  Google Scholar 

  5. Williams PT, Bagri R (2004) Int J Energy Res 28:31

    Article  CAS  Google Scholar 

  6. ke H, Li-hua T, Zi-Bin Z, Cheng-Fang Z (2005) Polym Degrad Stab 89:312

    Article  CAS  Google Scholar 

  7. Karaduman A, Simsek EH, Cicek B, Bilgesu AY (2002) J Anal Appl Pyrolysis 62:273

    Article  CAS  Google Scholar 

  8. Pedroso AG, Rosa DS (2005) Carbohydr Polym 59:1

    Article  CAS  Google Scholar 

  9. Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) Polymer 44:1517

    Article  CAS  Google Scholar 

  10. Thomson DA (1995) Plast Rubber Paper Recycling ACS Symp Ser 609:89

    CAS  Google Scholar 

  11. Kiatkamjornwong S, Sonsuk M, Wittayapichet S, Prasassarakich P, Vejjanukroh P (1999) Polym Degrad Stab 66:323

    Article  CAS  Google Scholar 

  12. Parra DF, Tadini CC, Ponce P, Lugao AB (2004) Carbohydr Polym 58:475

    Article  CAS  Google Scholar 

  13. Fran ça LF, Reber G, Meireles MAA, Machado NT, Brunner G (1999) J Supercrit Fluids 14:247

    Article  Google Scholar 

  14. Bernal-Alvarado J, Mansanares AM, da Silva EC, Moreira SGC (2003) Ver Sci Instrum 74:697

    Article  CAS  Google Scholar 

  15. Garcia-Quiroz A, Moreira SGC, de Morais AV, Silva AS, Rocha GN, Alcântara P (2003) Instrum Sci Technol 31:93

    Article  CAS  Google Scholar 

  16. Albuquerque MLS, Guedes I, Alcântara P, Moreira SGC (2003) Vib Spectrosc 33:127

    Article  CAS  Google Scholar 

  17. Albuquerque MLS, Guedes I, Alcântara P, Moreira SGC, Neto NMB, Correa DS, Zílio SC (2005) J Braz Chem Soc 16:1113

    Article  CAS  Google Scholar 

  18. Lognay G, Trebejo E, Jordan E, Marlier M, Severin M, Ortiz de Záate I (1987) Grasas y Aceites 38:303

    CAS  Google Scholar 

  19. Durães JA, Drummond AL, Pimentel TAPF, Murta MM, Moreira SGC, Bicalho FS, Sales MJS (2006) Eur Polym J (unpublished)

  20. Durães JA, Drummond AL, Pimentel TAPF, Murta MM, Moreira SGC, Sales MJS (2004) Br PI 0403407-4

  21. Chrastil J (1987) Carbohydr Res 159:154

    Article  CAS  Google Scholar 

  22. Godbole S, Gote S, Latkar M, Chakrabarti T (2003) Bioresour Technol 86:33

    Article  CAS  Google Scholar 

  23. Ozawa T (1965) Bull Chem Soc Jpn 38:1881

    Article  CAS  Google Scholar 

  24. Lorcks J (1998) Polym Degrad Stab 59:245

    Article  CAS  Google Scholar 

  25. Wu RR, Kao HM, Chaing JC, Woo EM (2002) Polymer 43:171

    Article  Google Scholar 

  26. Jayasekara R, Harding I, Bowater I, Christie GBY, Lonergan GT (2004) Polym Test 23:17

    Article  CAS  Google Scholar 

  27. Tester RF, Karkalas J, Qi X (2004) J Cereal Sci 39:151

    Article  CAS  Google Scholar 

  28. Carvalho AJF, Curvelo AAS, Agnelli JAM (2001) Carbohydr Polym 45:189

    Article  Google Scholar 

  29. Shalaby SW (1981) In: Turi EA (ed) Thermal characterization of polymeric materials. Academic Press Inc., Florida, p 287

  30. Rudnik E, Matushek G, Milanov N, Kettrup A (2006) J Thermal Anal Calorimetr 85:267

    Article  CAS  Google Scholar 

  31. Ozawa T (1971) Polymer 12:150

    Article  CAS  Google Scholar 

  32. Chan JH, Balke ST (1997) Polym Degrad Stab 57:135

    Article  CAS  Google Scholar 

  33. Leloup LM, Colonna P, Buleon A (1991) J Cereal Sci 13:1

    Article  CAS  Google Scholar 

  34. Bastioli C (1995) In: Scott G, Gilead D (eds) Degradable polymers. Chapman & Hall, London, p 112

Download references

Acknowledgements

The authors are grateful for XRD measurements at the Instituto de Geociências – Laboratório de Difração de Raios-X and financial support from UnB-IQ, CNPq, FAP-DF, FINATEC, FINEP-CT INFRA No. 0970/01 and to Dr. J. A. Dias (IQ-UnB) for NMR spectra acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria José Araújo Sales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pimentel, T.A.P.F., Durães, J.A., Drummond, A.L. et al. Preparation and characterization of blends of recycled polystyrene with cassava starch. J Mater Sci 42, 7530–7536 (2007). https://doi.org/10.1007/s10853-007-1622-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1622-x

Keywords

Navigation