Abstract
Porous scaffold structures are used in tissue engineering to provide structural guidance for regenerating tissues. The use of carbon dioxide (CO2) to create such scaffolds has received some attention in the past but many researchers believe that although CO2 processing of polymers can lead to porous scaffolds there is limited interconnectivity between the pores. In this study, highly porous (greater than 85%) and well interconnected scaffolds were obtained in which the size, distribution and number of pores could be controlled. This control was achieved by altering the rate of venting from polymer discs saturated with CO2 under modest temperature and pressure. The polymer used is a blend of poly (ethyl methacrylate) and tetrahydrofurfuryl methacrylate (PEMA/THFMA). This polymer system has shown promise for potential applications in cartilage repair.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
G. CHEN, T. USHIDA and T. TATEISHI, Macromol. Biosci. 2 (2002) 67.
K. F. LEONG, C. M. CHEAH and C. K. CHUA, Biomaterials 24 (2003) 2363.
Q. HUANG, D. PAUL and B. SEIBIG, Membrane Technol. 140 (2001) 6.
R. A. QUIRK, R. M. FRANCE, K. M. SHAKESHEFF and S. M. HOWDLE, Curr. Opin. Solid State Mater. Sci. 8 (2004) 313.
M. WEBER, L. RUSSELL and P. DEBENEDETTI, J. Supercritical Fluids 23 (2002) 65.
M. A. MCHUGH and V. J. KRUKONIS, Supercritical Fluid Extraction: Principles and Practice (Butterworth-Heinemann, Boston, 1994), p 512.
A. I. COOPER, Adv. Mater. 13 (2001) 1.
H. M. WOODS, M. M. C. G. SILVA, C. NOUVEL, K. M. SHAKESHEFF and S. M. HOWDLE, J. Mater. Chem. 14 (2004) 1663.
D. J. MOONEY, D. F. BALDWIN, N. P. SUH, J. P. VACANTI and R. LANGER, Biomaterials 17 (1996) 1417.
S. M. HOWDLE, et al. Chem. Commun. 1 (2001) 109.
S. G. KAZARIAN, Polym. Sci. 42 (2000).
D. L. TOMASKO, et al. Ind. Eng. Chem. 42 (2004) 6431.
L. D. HARRIS, B.-S. KIM and D. J. MOONEY, J. Biomed. Mater. Res. 42 (1998) 396.
S. K. GOEL and E. J. BECKMAN, Polym. Eng. Sci. 34 (1994) 1137.
Polym. Eng. Sci.., 34 (1994) 1148.
C. B. PARK, D. F. BALDWIN and N. P. SUH, Polym. Eng. Sci.., 35 (1995) 432.
S. DOWNES, R. S. ARCHER, M. V. KAYSER, M. P. PATEL and M. BRADEN, J. Mater. Sci.: Mater. Med. (1994) 88.
N. REISSIS, S. DOWNES, M. KAYSER, D. LEE and G. A. BENTLEY, J. Mater. Sci.: Mater. Med., 5 (1994) 793.
J. Mater. Sci.: Mater. Med., 5 (1994) 402.
R. M. SAWTELL, S. DOWNES and M. V. KAYSER, J. Mater. Sci.: Mater. Med., 6 (1995) 676.
R. M. SAWTELL, M. V. KAYSER and S. DOWNES, Cells Mater. 5 (1995) 63.
R. M. WYRE and S. DOWNES, Biomaterials 21 (2000) 335.
J. J. A. BARRY, H. S. GIDDA, C. A. SCOTCHFORD and S. M. HOWDLE, Biomaterials. 25 (2004) 3559.
C. D. MCFARLAND, et al., J. Biomed. Mater. Res. 44 (1999) 1.
A. TAMPIERI, G. CELOTTI, S. SPRIO, A. DELCOGLIANO and S. FRANZESE, Biomaterials 22 (2001) 1365.
Y. DAUSSE, et al., Osteoarthritis Cartilage 11 (2003) 16.
T. HILDEBRAND and P. RUEGSEGGER, J. Microsc. 185 (1997) 67.
T. HILDEBRAND, A. LAIB, R. MULLER, J. DEQUEKER and P. RUEGSEGGER, J. Bone and Mineral Res. 14 (1999) 1167.
A. I. COOPER, J. Mater. Chem. 10 (2000) 207.
K. A. ARORA, A. J. LESSER and T. J. MCCARTHY, Macromolecules 31 (1998) 4614.
S. H. ALAVI, B. K. GOGOI, M. KHAN, B. J. BOWMAN and S. S. H. RIZVI, Food Res. Int. 32 (1999) 107.
M. C. G. S. SILVA, K. M. SHAKESHEFF and S. M. HOWDLE, Polymer scaffolds for cartilage engineering using supercritical fluids. in UKSB Conf. Proc. (Northern Ireland, 2003).
L. N. NIKITIN, et al., Macromol 35 (2002) 934.
C. A. LEóN Y LEóN, Adv. Colloid and Interface Sci. 76-77 (1998) 341.
I. V. YANNAS, E. LEE, D. P. ORGILL, E. M. SKRABUT and G. F. MURPHY, Proc. Natl. Acad. Sci. 86 (1989) p. 933.
B. D. BOYAN, T. W. HUMBERT, D. D. DEAN and Z. SCHWARTZ, Biomater. 17 (1996) 137.
F. A. L. DULLIEN, “Porous Media: Fluid Transport and Pore Structure” (Academic Press, San Diego, 1992), p. 574.
P. W. HUI, P. C. LEUNG and A. SHER, J. Biomech. 29 (1996) 123.
M. J. GRIMM and J. L. WILLIAMS, J. Biomech.. 30 (1997) 743.
J. SOHIER, R. E. HAAN, K. DE GROOT and J. M. BEZEMER, J. Control. Release 87 (2003) 57.
S. LI, J. R. DE WIJN, J. LI, P. LAYROLLE and K. DE GROOT, Tissue Eng. 9 (2003) 535.
G. BAROUD, J. Z. WU, M. BOHNER, S. SPONAGEL and T. STEFFEN, Med. Eng. Phys. 25 (2003) 283.
L. J. GIBSON and M. F. ASHBY, “Cellular Solids: Structure and Properties” (Cambridge University Press, Cambridge, 1997).
A. S. P. LIN, T. H. BARROWS, S. H. CARTMELL and R. E. Guldberg, Biomater. 24 (2003) 481.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barry, J.J.A., Silva, M.M.C.G., Cartmell, S.H. et al. Porous methacrylate tissue engineering scaffolds: using carbon dioxide to control porosity and interconnectivity. J Mater Sci 41, 4197–4204 (2006). https://doi.org/10.1007/s10853-006-7023-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-006-7023-8