Skip to main content
Log in

Quantitative analysis for kinetics of reactive diffusion in the Fe–Cr system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the binary Fe–Cr system, the γ phase with the face-centered cubic structure becomes a stable intermediate phase sandwiched between the Fe-rich α1 and Cr-rich α2 phases with the body-centered cubic structure in the temperature range between T = 1,119 and 1,185 K. Within this temperature range, the reactive diffusion between the α1 and α2 phases was experimentally observed by Nishizawa and Chiba (Nishizawa and Chiba (1970) J Jap Inst Met 34:629). In their experiment, Fe/Cr diffusion couples were annealed at T = 1,123–1,163 K for up to 600 h. Although the γ phase should be formed due to annealing, it was not recognized in any annealed diffusion couples. The mathematical model reported in a previous study (2004 Acta Mater 52:1193) was used to analyze their experimental results theoretically. In order to provide the boundary conditions for the analysis, the phase diagram in the Fe–Cr system was computed by a CALPHAD technique. The analysis indicates that the γ phase is actually produced at the interface but its thickness is less than 1 μm even after annealing at T = 1,163 K for 600 h. Thus, the γ phase is practically invisible under their experimental conditions. The analysis provides the experimental conditions for the γ phase to grow to observable thicknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lustman B, Mehl RF (1942) Trans Met Soc AIME 147:369

    Google Scholar 

  2. Horstmann D (1953) Stahl Eisen 73:659

    CAS  Google Scholar 

  3. Storchheim S, Zambrow JL, Hausner HH (1954) Trans Met Soc AIME 200:269

    Google Scholar 

  4. Castleman LS, Seigle LL (1957) Trans Met Soc AIME 209:1173

    Google Scholar 

  5. Castleman LS, Seigle LL (1958) Trans Met Soc AIME 212:589

    Google Scholar 

  6. Peterson NL, Ogilvie RE (1960) Trans Met Soc AIME 218:439

    CAS  Google Scholar 

  7. Adda Y, Beyeler M, Kirianenko A, Mauruce MF (1961) Mem Sci Rev Met 58:716

    CAS  Google Scholar 

  8. Birks LS, Seebold RE (1961) J Nucl Mater 3:249

    Article  CAS  Google Scholar 

  9. Seebold RE, Birks LS (1961) J Nucl Mater 3:260

    Article  CAS  Google Scholar 

  10. Kidson GV, Miller GD (1964) J Nucl Mater 12:61

    Article  CAS  Google Scholar 

  11. Sweeney WE, Jr., Batt AP (1964) J Nucl Mater 13:87

    Article  CAS  Google Scholar 

  12. Shibata K, Morozumi S, Koda S (1966) J Japan Inst Met 30:382

    Article  CAS  Google Scholar 

  13. Hirano K, Ipposhi Y (1968) J Japan Inst Met 32:815

    Article  CAS  Google Scholar 

  14. Nishizawa T, Chiba A (1970) J Japan Inst Met 34:629

    Article  CAS  Google Scholar 

  15. Kajihara M, Yamada T, Miura K, Kurokawa N, Sakamoto K (2003) Netsushori 43:297

    CAS  Google Scholar 

  16. Yamada T, Miura K, Kajihara M, Kurokawa N, Sakamoto K (2004) J Mater Sci 39:2327

    Article  CAS  Google Scholar 

  17. Yamada T, Miura K, Kajihara M, Kurokawa N, Sakamoto K, (2005) Mater Sci Eng A 390:118

    Article  Google Scholar 

  18. Mita M, Kajihara M, Kurokawa N, Sakamoto K Mater Sci Eng A, (2005) 403:269

    Article  Google Scholar 

  19. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1990) In: Binary Alloy Phase Diagrams, vol 2. ASM International, Materials Park, Ohio, p 1273

  20. Kajihara M (2004) Acta Mater 53:1193

    Article  Google Scholar 

  21. Hillert M (1986). In: Bennett LH (eds), Computer modeling of phase diagrams. TMS-AIME, Warrendale Pennsylvania, p 1

    Google Scholar 

  22. Hillert M, Jarl M (1978) Calphad 2:227

    Article  CAS  Google Scholar 

  23. Andersson J-O, Sundman B (1987) Calphad 11:83

    Article  CAS  Google Scholar 

  24. Dahlquist G, Björck A (1974) Numerical methods. Prentice-Hall Inc, Englewood Cliffs New Jersey, p 248

  25. Metals Data Book (1993) edited by Japan Inst Met. Maruzen, Tokyo, p 21

  26. Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Oxford Science Publications, Clarendon Press, Oxford, p 603

  27. Metals Hand Book (2000) edited by Japan Inst Met. Maruzen, Tokyo, p 473

Download references

Acknowledgements

The authors are grateful to Professor K. Ishida at Tohoku University, Japan for stimulating discussions. The present study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kajihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajihara, M., Yamashina, T. Quantitative analysis for kinetics of reactive diffusion in the Fe–Cr system. J Mater Sci 42, 2432–2442 (2007). https://doi.org/10.1007/s10853-006-1212-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1212-3

Keywords

Navigation