Skip to main content

Advertisement

Log in

Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We describe the micro-mechanical properties of vertically aligned carbon nanotubes (VACNTs) fabricated using a photolithographically patterned iron catalyst prepared using sol–gel techniques. The carbon nanotubes (CNTs) were grown via chemical vapor deposition. The relative mechanical stiffness of the resultant structure was measured using nanoindentation based techniques and is shown to be related to the number of contact sites between tubes. Elastic deformation occurs during compression at large strains, however energy is dissipated during deformation, likely through tube–tube interactions. The effective elastic modulii are depth dependent, due to the compression of pre-buckled geometries. The effective elastic modulii range between 0.03 and 0.08 GPa for a low number of contact sites and 0.1 and 0.3 GPa for a high number of contact sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dresselhaus MS, Eklund PC (2000) Adv Phys 49:705

    Article  CAS  Google Scholar 

  2. Berber S, Kwon YK, Tomanek D (2000) Phys Rev Lett 84:4613

    Article  CAS  Google Scholar 

  3. Hone J, Batlogg B, Bener Z, Johnson AT, Fischer JE (2000) Science 289:1730

    Article  CAS  Google Scholar 

  4. Shimizu T, Abe H, Ando A, Nakayama Y, Tokumoto H (2005) Surf Interface Anal 37:204

    Article  CAS  Google Scholar 

  5. Kiang C-H, Goddard WA, Beyers R, Bethune DS (1995) Carbon 33:903

    Article  CAS  Google Scholar 

  6. Mylvaganam K, Zhang LC (2004) Carbon 42:2025

    Article  CAS  Google Scholar 

  7. Salvetat J-P, Kulik AJ, Bonard JM, Briggs GAD, Stockli T, Metenier K, Bonnamy S, Beguin F, Burnham NA, Forro L (1990) Adv Mater 11:161

    Article  Google Scholar 

  8. Suhr J, Koratkar N, Keblinski P, Ajayan P (2005) Nat Mater 4:134

    Article  CAS  Google Scholar 

  9. Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Mater Sci Eng A 334:173

    Article  Google Scholar 

  10. Terrones M, Grobert N, Olivares J, Zhang JP, Terrones H, Kordatos K, Hsu WK, Hare JP, Townsend PD, Prassides K, Cheetham AK, Kroto HW, Walton DRM (1997) Nature 388:52

    Article  CAS  Google Scholar 

  11. Qi HJ, Teo KBK, Lau KKS, Boyce MC, Milne WI, Robertson J, Gleason KKJ (2003) Mech Phys Solids 51:2213

    Article  CAS  Google Scholar 

  12. Kinoshia H, Kume I, Tagawa M, Ohmae N (2004) Appl Phys Lett 85:2780

    Article  Google Scholar 

  13. Poggi MA, Boyles JS, Bottomley LA, McFarland AW, Colton JS, Nguyen CV, Stevens RS, Lillehei PT (2004) Nanoletters 4:1009

    Article  CAS  Google Scholar 

  14. Christensen AO, Jacob JP, Richards CD, Bahr DF, Richards RF (2003) In: Shoji S (ed) The 12th International conference on solid state sensors, actuators and microsystems, Boston, (IEEE 2003), p 1427

  15. Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TH, Ruoff RS (2000) Science 287:637

    Article  CAS  Google Scholar 

  16. Demczyk BG, Wang YM, Cummings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Mater Sci Eng A334:173

    Article  CAS  Google Scholar 

  17. Dong L, Jiao J, Pan C, Tuggle DW (2004) Appl Phys A 78:9

    Article  CAS  Google Scholar 

  18. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  Google Scholar 

  19. Cheung CL, Kurtz A, Park H, Lieber CM (2002) J Phys Chem B 106:2429

    Article  CAS  Google Scholar 

  20. Ishida M, Hongo H, Nihey F, Ochiai Y (2004) Jpn J Appl Phys 43:L1356

    Article  Google Scholar 

  21. Encheva G, Samuneva B, Djambaski P, Kashchieva E, Paneva D, Mitov I (2004) J Non-Cryst Solids 345,346:615

    Article  Google Scholar 

  22. Yu M-F, Kowalewski T, Rouff RS (2000) Phys Rev Lett 85:1456

    Article  CAS  Google Scholar 

  23. Kis A, Csanyi G, Salvetat J-P, Thien-Nga L, Couteau E, Kulik AJ, Benoit W, Brugger J, Forro L (2004) Nat Mater 3:153–157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation under grant number CTS-0404370 and the US Army SMDC under contract number DASG60-02-C-0084 for the financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Bahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarter, C.M., Richards, R.F., Mesarovic, S.D. et al. Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf. J Mater Sci 41, 7872–7878 (2006). https://doi.org/10.1007/s10853-006-0870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0870-5

Keywords

Navigation