Skip to main content
Log in

Modelling off-axis ply matrix cracking in continuous fibre-reinforced polymer matrix composite laminates

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fracture process of composite laminates subjected to static or fatigue tensile loading involves sequential accumulation of intra- and interlaminar damage, in the form of transverse cracking, splitting and delamination, prior to catastrophic failure. Matrix cracking parallel to the fibres in the off-axis plies is the first damage mode observed. Since a damaged lamina within the laminate retains certain amount of its load-carrying capacity, it is important to predict accurately the stiffness properties of the laminate as a function of damage as well as progression of damage with the strain state. In this paper, theoretical modelling of matrix cracking in the off-axis plies of unbalanced symmetric composite laminates subjected to in-plane tensile loading is presented and discussed. A 2-D shear-lag analysis is used to determine ply stresses in a representative segment and the equivalent laminate concept is applied to derive expressions for Mode I, Mode II and the total strain energy release rate associated with off-axis ply cracking. Dependence of the degraded stiffness properties and strain energy release rates on the crack density and ply orientation angle is examined for glass/epoxy laminates. Suitability of a mixed mode fracture criterion to predict the cracking onset strain is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Highsmith AL, Reifsnider KL (1982) In: Reifsnider KL (eds), Damage in composite materials: mechanisms, accumulation, tolerance, and characterization, ASTM STP 775. ASTM, Philadelphia PA, pp 103–117

  2. Bowles DE (1984) J Comp Mater 18(2):173

    CAS  Google Scholar 

  3. Lundgren JE, Gudmundson P (1999) Comp Sci Technol 59(13):1983

    Article  CAS  Google Scholar 

  4. Birman V, Byrd L (2001) Comp Part B 31(1):47

    Article  Google Scholar 

  5. Nairn JA, Hu S (1992) Intl J Fract 57(1):1–24

    Article  Google Scholar 

  6. Bailey JE, Curtis PT, Parvizi A (1979) Proc Roy Soc Lon A A366(1727):599

    Google Scholar 

  7. Jamison RD, Schulte K, Reifsnider KL, Stinchcomb WW (1984) In: Wilkins J (ed), Effects of defects in composite materials, ASTM STP 836. ASTM, Philadelphia, PA, pp 21–55

  8. Charewicz A, Daniel IM (1986) In: Hahn HT (ed), Composite materials: fatigue and fracture, ASTM STP 907. ASTM, Philadelphia, PA, pp 274–297

    Google Scholar 

  9. Kashtalyan M, Soutis C (2002) Int Appl Mech 38(6):641

    Article  Google Scholar 

  10. Garrett KW, Bailey JE (1977) J Mater Sci 12(1):157

    Article  CAS  Google Scholar 

  11. Parvizi A, Garrett KW, Bailey JE (1978) J Mater Sci 13(1):195

    Article  CAS  Google Scholar 

  12. Daniel IM, Charewicz A (1986) Eng Fract Mech 25(5–6):793

    Article  Google Scholar 

  13. Smith PA, Boniface L, Glass NFC (1998) Appl Comp Mater 5(1):11

    Article  CAS  Google Scholar 

  14. Reifsnider KL, Talug A (1980) Intl J Fatigue 3(1):3

    Article  Google Scholar 

  15. Masters JE, Reifsnider KL (1982) In: Reifsnider KL (ed) Damage in composite materials: mechanisms, accumulation, tolerance, and characterization, ASTM STP 775. ASTM, Philadelphia, PA, pp 40–62

    Google Scholar 

  16. O’Brien TK, Hooper SJ (1991) Local delamination in laminates with angle ply matrix cracks: Part I Tension tests and stress analysis. NASA Technical Memorandum 104055/ AVSCOM Technical Report 91-B-010

  17. Marsden WM, Guild FJ, Ogin SL, Smith PA (1999) Plastic, Rubber Comp 28(1):30

    Article  CAS  Google Scholar 

  18. Tong J, Guild FJ, Ogin SL, Smith PA (1997) Comp Sci Technol 57(11):1527

    Article  CAS  Google Scholar 

  19. Crocker LE, Ogin SL, Smith PA, Hill PS (1997) Comp Part A 28(9–10):839

    Article  Google Scholar 

  20. Varna J, Joffe R, Akshantala NV, Talreja R (1999) Comp Sci Technol 59(14):2139

    Article  CAS  Google Scholar 

  21. Tong J, Guild FJ, Ogin SL, Smith PA (1997) Comp Sci Technol 57(11):1537

    Article  CAS  Google Scholar 

  22. Lapusta YN, Henaff-Gardin C (2000) Intl J Fract 102(4):L73

    Article  Google Scholar 

  23. McCartney LN (1996) In: Proceedings of the 7th European conference on composite materials. London, May

  24. Kashtalyan M, Soutis C (2000) Plastics Rubber Comp 29(9):482

    CAS  Google Scholar 

  25. Zhang J, Herrmann KP (1999) Comp Part A Appl Sci Manufact 30(5):683–706

    Article  Google Scholar 

  26. Kashtalyan M, Soutis C (2001) Intl J Fract 112(2):L3

    Article  Google Scholar 

  27. Zhang J, Fan J, Soutis C (1992) Composites 23(9):291

    Article  Google Scholar 

  28. Jones RM (1999) Mechanics of composite materials, 2nd ed. Francis & Taylor, Philadelphia, PA

    Google Scholar 

  29. Mccartney LN (1996) Stress transfer mechanics for ply cracks in general symmetric laminates. NPL Report CMMT(A)50

  30. Rikards R, Buchholz FG, Wang H, Bledzki AK, Korjakin A, Richard HA (1998) Eng Fract Mech 61(3–4):325

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this research by Engineering and Physical Sciences Research Council (EPSRC/GR/L51348 and EPSRC/GR/A31001/02) and the British Ministry of Defence is gratefully acknowledged. The authors would like to thank Dr LN McCartney for helpful discussions, and also for providing his numerical results for comparison purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Soutis.

Appendices

Appendix A

Variation of the out-of-plane shear stresses has the form

$$ \sigma_{j3}^{(2)} =\frac{\tau_j} {h_2} x_3, \quad 0\leqslant \vert x_3 \vert \leqslant h_2, \quad j=1,2, \quad \sigma_{j3}^{(1)} =\frac{\tau_j} {h_1} (h-x_3),\quad h_2 \leqslant \vert x_3 \vert \leqslant h $$
(24)

Constitutive equations for the out-of-plane shear stresses are

$$ \left\{{{\begin{array}{ll} {\sigma_{13}^{(k)}} \\ {\sigma_{23}^{(k)}} \\ \end{array}}} \right\}\approx \left[ {{ \begin{array}{ll} {Q_{55}^{(k)}} & {Q_{45}^{(k)}} \\ {Q_{45}^{(k)}} & {Q_{44}^{(k)}} \\ \end{array}}} \right]\frac{\partial} {\partial x_3} \left\{ {{\begin{array}{ll} {u_1^{(k)}} \\ {u_2^{(k)}} \\ \end{array}}} \right\},\quad i=1,2 $$
(25)

After substituting Eq. (25) into Eq. (24), multiplying them by x 3 and by hx 3 respectively and integrating with respect to x 3 we get

$$ \frac{h_1} {3}\left\{{{\begin{array}{ll} {\tau_1} \\ {\tau_2} \\ \end{array}}} \right\}=\left[ {{\begin{array}{ll} {{\hat Q}_{55}^{(1)}} & {{\hat Q}_{45}^{(1)}} \\ {{\hat Q}_{45}^{(1)}} & {{\hat Q}_{44}^{(1)}} \\ \end{array}}} \right]\left({\left\{{{\begin{array}{ll} {{\tilde u}_1^{(1)}} \\ {{\tilde u}_2^{(1)}} \\ \end{array}}} \right\}-\left\{{{\begin{array}{ll} {U_1} \\ {U_2} \\ \end{array}}} \right\}} \right) $$
(26a)
$$ \frac{h_2} {3}\left\{ {{\begin{array}{ll} {\tau_1} \\ {\tau_2} \\ \end{array}}} \right\}=\left[ {{\begin{array}{ll} {{\hat Q}_{55}^{(2)}} & {{\hat Q}_{45}^{(2)}} \\ {{\hat Q}_{45}^{(2)}} & {{\hat Q}_{44}^{(2)}} \\ \end{array}}} \right]\left({\left\{{{\begin{array}{ll} {U_1} \\ {U_2} \\ \end{array}}}\right\}-\left\{ {{\begin{array}{ll} {{\tilde u}_1^{(2)}} \\ {{\tilde u}_2^{(2)}} \\ \end{array}}}\right\}} \right) $$
(26b)

Here {U j }={u (1) j }| x_3 =h_2 ={u (2) j }| x_3 =h_2,   j=1,2 are the in-plane displacements at the interface. After rearranging Eqs. (26a) and (26b) become

$$ \left\{ {{\begin{array}{ll} {{\tilde u}_1^{(1)}} \\ {{\tilde u}_2^{(1)}} \\ \end{array}}} \right\}-\left\{ {{\begin{array}{ll} {{\tilde u}_1^{(2)}} \\ {{\tilde u}_2^{(2)}} \\ \end{array}}} \right\}=\left({\frac{h_1} {3}\left[ {{\begin{array}{ll} {{\hat Q}_{55}^{(1)}} & {{\hat Q}_{45}^{(1)}} \\ {{\hat Q}_{45}^{(1)}} & {{\hat Q}_{44}^{(1)}} \\ \end{array}}} \right]^{-1}} \right.\left. {+\frac{h_2} {3}\left[ {{\begin{array}{ll} {{\hat Q}_{55}^{(2)}} & {{\hat Q}_{45}^{(2)}} \\ {{\hat Q}_{45}^{(2)}} & {{\hat Q}_{44}^{(2)}} \\ \end{array}}} \right]^{-1}} \right)\left\{ {{\begin{array}{ll} {\tau_1} \\ {\tau_2} \\ \end{array}}} \right\} $$
(27)

Inversion of Eq. (27) leads to

$$ \left\{ {{\begin{array}{ll} {\tau_1} \\ {\tau_2} \\ \end{array}}} \right\}=\left[ {{\begin{array}{ll} {K_{11}} & {K_{12}} \\ {K_{21}} & {K_{22}} \\ \end{array}}} \right]\left({\left\{ {{\begin{array}{ll} {{\tilde u}_1^{(1)}} \\ {{\tilde u}_2^{(1)}} \\ \end{array}}} \right\}-\left\{ {{\begin{array}{ll} {{\tilde u}_1^{(2)}} \\ {{\tilde u}_2^{(2)}} \\ \end{array}}} \right\}} \right), $$
(28a)
$$ \left[ {{\begin{array}{ll} {K_{11}} & {K_{12}} \\ {K_{21}} & {K_{22}} \\ \end{array}}} \right]=\left({\frac{h_1} {3}\left[ {{\begin{array}{ll} {{\hat Q}_{55}^{(1)}} & {{\hat Q}_{45}^{(1)}} \\ {{\hat Q}_{45}^{(1)}} & {{\hat Q}_{44}^{(1)}} \\ \end{array}}} \right]^{-1}} \right.\left. {+\frac{h_2} {3}\left[ {{\begin{array}{ll} {{\hat Q}_{55}^{(2)}} & {{\hat Q}_{45}^{(2)}} \\ {{\hat Q}_{45}^{(2)}} & {{\hat Q}_{44}^{(2)}} \\ \end{array}}} \right]^{-1}} \right)^{-1} $$
(28b)

Appendix B

On applying the constitutive equations, inverse to Eq. (4), the generalised plane strain condition \({\tilde \varepsilon}_{11}^{(1)} ={\tilde \varepsilon}_{11}^{(2)}\) becomes

$$ S_{11}^{(1)} {\tilde \sigma}_{11}^{(1)} +S_{12}^{(1)} {\tilde \sigma}_{22}^{(1)} +S_{16}^{(1)} {\tilde \sigma}_{12}^{(1)} ={\hat S}_{11}^{(2)} {\tilde \sigma}_{11}^{(2)} +{\hat S}_{12}^{(2)} {\tilde \sigma}_{22}^{(2)} $$
(29)

where \({\hat S}_{ij}^{(k)}\) are the compliances for the kth layer. Using the laminate equilibrium equations, Eq. (5), stresses in the 1st layer can be excluded, so that

$$ {\tilde \sigma}_{11}^{(2)} =a_{22} {\tilde \sigma}_{22}^{(2)} +a_{12} {\tilde \sigma}_{12}^{(2)} +b{\bar \sigma}_x, $$
(30)
$$ a_{22} =-\frac{{\hat S}_{12}^{(1)} +\chi {\hat S}_{12}^{(2)}} {{\hat S}_{11}^{(1)} +\chi {\hat S}_{11}^{(2)}}, \quad a_{12} =-\frac{{\hat S}_{16}^{(1)}} {{\hat S}_{11}^{(1)} +\chi {\hat S}_{11}^{(2)}}, \quad \chi =\frac{h_1} {h_2}, $$
$$ b=(1+\chi)\frac{({\hat S}_{11}^{(1)} \cos^2\theta +{\hat S}_{12}^{(1)} \sin^2\theta -{\hat S}_{16}^{(1)} \sin\theta \cos\theta)}{{\hat S}_{11}^{(1)} +\chi {\hat S}_{11}^{(2)}} $$

Finally, strain differences are expressed in terms of stresses as

$$ \left\{ {{\begin{array}{ll} {{\tilde \gamma}_{12}^{(1)} -{\tilde \gamma}_{12}^{(2)}} \\ {{\tilde \varepsilon}_{22}^{(1)} -{\tilde \varepsilon}_{22}^{(2)}} \\ \end{array}}} \right\}=-\frac{1}{\chi} \left[ {{\begin{array}{ll} {L_{11}} & {L_{12}} \\ {L_{21}} & {L_{22}} \\ \end{array}}} \right]\left\{ {{\begin{array}{ll} {{\tilde \sigma}_{12}^{(2)}} \\ {{\tilde \sigma}_{22}^{(2)}} \\ \end{array}}} \right\}+\frac{1}{\chi} \left\{ {{\begin{array}{ll} {M_1} \\ {M_{12}} \\ \end{array}}} \right\}{\bar \sigma}_x $$
(31)

Here

$$ L_{11} ={\hat S}_{66}^{(1)} +a_{12} {\hat S}_{16}^{(1)} +\chi {\hat S}_{66}^{(2)}, \quad L_{12} ={\hat S}_{26}^{(1)} +a_{22} {\hat S}_{16}^{(1)} $$
$$ L_{21} ={\hat S}_{26}^{(1)} +a_{12} {\hat S}_{12}^{(1)} +\chi a_{12} {\hat S}_{12}^{(2)},\quad L_{22} ={\hat S}_{22}^{(1)} +a_{22} {\hat S}_{12}^{(1)} +\chi ({\hat S}_{22}^{(2)}+a_{22} {\hat S}_{12}^{(2)})$$
$$ M_1 =(1+\chi)\left[ {({\hat S}_{16}^{(1)} +a_{12} {\hat S}_{11}^{(2)})\cos^2\theta} \right.+({\hat S}_{26}^{(1)} +a_{12} {\hat S}_{12}^{(1)})\sin^2\theta \left. {-({\hat S}_{66}^{(1)} +a_{12} {\hat S}_{16}^{(1)})\sin\theta \cos\theta} \right] $$
$$ M_2 =(1+\chi)\left[ {({\hat S}_{12}^{(1)} +a_{22} {\hat S}_{11}^{(1)})\cos^2\theta +} \right.({\hat S}_{22}^{(1)} +a_{22} {\hat S}_{12}^{(1)})\sin^2\theta -\left. {({\hat S}_{26}^{(1)} +a_{22} {\hat S}_{16}^{(1)})\sin\theta \cos\theta} \right] $$

Substitution into the equilibrium equations, Eq. (3), yields the following coupled 2nd order differential equations

$$ \frac{{\rm d}^2}{{\rm d}x_2^2} \left\{ {{\begin{array}{ll} {{\tilde \sigma}_{12}^{(2)}} \\ {{\tilde \sigma}_{22}^{(2)}} \\ \end{array}}} \right\}-\frac{1}{h_1} \left[ {{\begin{array}{ll} {K_{11}} & {K_{12}} \\ {K_{12}} & {K_{22}} \\ \end{array}}} \right]\;\left({\left[ {{\begin{array}{ll} {L_{11}} & {L_{12}} \\ {L_{12}} & {L_{22}} \\ \end{array}}} \right]\left\{ {{\begin{array}{ll} {{\tilde \sigma}_{12}^{(2)}} \\ {{\tilde \sigma}_{22}^{(2)}} \\ \end{array}}} \right\}+\left\{ {{\begin{array}{ll} {M_1} \\ {M_2} \\ \end{array}}} \right\}{\bar \sigma}_x} \right)=0$$
(32)

This set of equations is uncoupled at the expense of increasing the order of differentiation, resulting in a fourth order non-homogeneous ordinary differential equation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashtalyan, M., Soutis, C. Modelling off-axis ply matrix cracking in continuous fibre-reinforced polymer matrix composite laminates. J Mater Sci 41, 6789–6799 (2006). https://doi.org/10.1007/s10853-006-0207-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0207-4

Keywords

Navigation