Skip to main content

Advertisement

Log in

Using granite rejects to aid densification and improve mechanical properties of alumina bodies

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The industrial use of waste materials in the ceramic industry has been widely investigated. This work describes the research carried out on the manufacturing of alumina bodies with granite reject additions. The reject was used as produced by a local industry that saws granite stones into blocks and slabs. This industrial process produces a significant amount of that reject, which is discarded in sedimentation lagoons, landfill areas or simply thrown in rivers, resulting in environmental pollution. Alumina and the granite reject were ball-mill mixed with 5 wt% manganese oxide and pressed under an uniaxial load of 20 MPa. Samples were subjected to thermal analysis (DTA, TG and dilatometry) and sintered in air at 1300 and 1350C during 1 h in an electric furnace. Sintered specimens were characterized by X-ray diffraction, apparent density, open porosity and flexural strength. The results showed that the addition of granite reject and manganese oxide enables low temperature sintering and remarkably improves (~300%) the cold mechanical properties of the alumina body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. GITZEN, in “Alumina as a Ceramic Material”, (The American Ceramic Society, Columbus, Ohio, 1970).

    Google Scholar 

  2. E. DOERRE and H. HUEBNER, in “Alumina: Processing and Applications”, (Springer, Berlin, 1984).

    Google Scholar 

  3. R. J. BROOK, S. P. HOWLETT and SU XING WU, in: “Sintering – Theory and Practice”, (Elsevier, The Netherlands, 1982).

    Google Scholar 

  4. R. J. BROOK, Am. Ceram. Soc. Bull 64 (1985) 1344.

    Google Scholar 

  5. H. P. CAHOON and C. J. CHRISTENSEN, ibid. 39 (1956) 337.

    Google Scholar 

  6. R. L. COBLE, J. Appl. Phys 32 (1961) 793.

    Article  Google Scholar 

  7. I. B. CUTLER, C. BRADSHAW, C. J. CHRISTENSEN and E. P. HYATT, J. Am. Ceram. Soc. 40 (1957) 134.

    Google Scholar 

  8. R. J. BROOK, E. GILBART, N. J. SHAW and U. EISELE, Powder Metall. 28 (1985) 105.

    Google Scholar 

  9. M. HARMER, E. W. ROBERTS and R. J. BROOK, Trans. J. Br. Ceram. Soc. 78 (1979) 22.

    Google Scholar 

  10. N. J. SHAW and R. J. BROOK, J. Am. Ceram. Soc. 69 (1986) 107.

    Article  Google Scholar 

  11. R. D. BAGLEY, I. B. CUTLER and D. L. JOHNSON, ibid. 53 (1970) 136.

    Google Scholar 

  12. W. R. RAO and I. B. CUTLER, ibid. 56 (1973) 588.

    Google Scholar 

  13. L. A. XUE and I. W. CHEN, ibid. 74 (1991) 2011.

    Article  Google Scholar 

  14. H. ERKALFA, Z. MISIRLI and T. BAYKARA, Ceram. Int. 24 (1998) 81.

    Article  Google Scholar 

  15. R. M. R. PASOTTI, A. H. A. BRESSIANI and J. C. BRESSIANI, Int. J. Refractory Metals Hard Mater. 16 (1998) 423.

    Article  Google Scholar 

  16. T. HIRATA, K. AKIYAMA and H. YAMAMOTO, J. Eur. Ceram. Soc. 20 (2000) 195.

    Article  Google Scholar 

  17. W. ACCHAR, D. SCHWARZE and P. GREIL, Mater. Sci. Eng. A351 (2003) 299.

    Google Scholar 

  18. M. SATHIYAKUMAR and F. D. GNANAM, Ceram. Int. 29 (2003) 869.

    Article  Google Scholar 

  19. P. SVANCAREK, D. GALUSEK, C. CALVERT, F. LOUGHRAN, A. BROWN, R. BRYDSON and F. RILEY, J. Eur. Ceram. Soc. 24 (2004) 3453.

    Article  Google Scholar 

  20. M. C. MOREIRA and A. M. SEGADÃES, ibid. 16 (1996) 1089.

    Article  Google Scholar 

  21. M. DONDI, M. MARSIGLI and B. FABBRI, Tile Brick Int. 13 (1997) 302.

    Google Scholar 

  22. M. S. H. CRESPO and J. M. RINCON, Ceram. Int. 27 (2001) 713.

    Article  Google Scholar 

  23. P. PISCIELLA, S. CRISUCCI, A. KARAMANOV and M. PELINO, Waste Management 21 (2001) 1.

    Article  PubMed  Google Scholar 

  24. L. P. F. SOUZA and H. S. MANSUR, J. Mater. Proc. Tech. 145 (2004) 14.

    Article  Google Scholar 

  25. S. N. MONTEIRO, L. A. PEÇANHA and C. M. F. VIEIRA, J. Eur. Ceram. Soc. 24 (2004) 2349.

    Article  Google Scholar 

  26. F. R. PEREIRA, A. F. NUNES, A. M. SEGADÃES and J. A. LABRINCHA, Key Eng. Mater. 264–268 (2004) 1743.

    Google Scholar 

  27. P. A. VESILIND, J. J. PEIRCE and R. F. WEINER, in “Environmental Engineering”, 3rd ed (Butterworth-Heinemann, Boston, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Acchar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acchar, W., Ramalho, E.G., Fonseca, Y.A. et al. Using granite rejects to aid densification and improve mechanical properties of alumina bodies. J Mater Sci 40, 3905–3909 (2005). https://doi.org/10.1007/s10853-005-0778-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-0778-5

Keywords

Navigation