Skip to main content

Advertisement

Log in

Fast and Numerically Stable Circle Fit

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We develop a new algorithm for fitting circles that does not have drawbacks commonly found in existing circle fits. Our fit achieves ultimate accuracy (to machine precision), avoids divergence, and is numerically stable even when fitting circles get arbitrary large. Lastly, our algorithm takes less than 10 iterations to converge, on average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In particular, it has been prescribed by a recently ratified standard for testing the data processing software for coordinate metrology [1].

References

  1. Ahn, S.J.: Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space. LNCS, vol. 3151. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  2. Atieg, A., Watson, G.A.: Fitting circular arcs by orthogonal distance regression. Appl. Numer. Anal. Comput. Math. 1, 66–76 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chan, N.N.: On circular functional relationships. J. R. Stat. Soc. B 27, 45–56 (1965)

    MATH  Google Scholar 

  4. Chernov, N.: Circular and linear regression: fitting circles and lines by least squares. In: Monographs on Statistics and Applied Probability, vol. 117. Chapman & Hall, London (2010)

    Google Scholar 

  5. Chernov, N., Lesort, C.: Statistical efficiency of curve fitting algorithms. Comput. Stat. Data Anal. 47, 713–728 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chernov, N., Lesort, C.: Least squares fitting of circles. J. Math. Imaging Vis. 23, 239–251 (2005)

    Article  MathSciNet  Google Scholar 

  7. Crawford, J.F.: A non-iterative method for fitting circular arcs to measured points. Nucl. Instrum. Methods 211, 223–225 (1983)

    Article  Google Scholar 

  8. Gander, W., Golub, G.H., Strebel, R.: Least squares fitting of circles and ellipses. BIT Numer. Math. 34, 558–578 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Joseph, S.H.: Unbiased least-squares fitting of circular arcs. Graph. Models Image Process. 56, 424–432 (1994)

    Article  Google Scholar 

  10. Karimäki, V.: Effective circle fitting for particle trajectories. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 305, 187–191 (1991)

    Article  Google Scholar 

  11. Kasa, I.: A curve fitting procedure and its error analysis. IEEE Trans. Instrum. Meas. 25, 8–14 (1976)

    Article  Google Scholar 

  12. Landau, U.M.: Estimation of a circular arc center and its radius. Comput. Vis. Graph. Image Process. 38, 317–326 (1987)

    Article  Google Scholar 

  13. Nievergelt, Y.: A finite algorithm to fit geometrically all midrange lines, circles, planes, spheres, hyperplanes, and hyperspheres. Numer. Math. 91, 257–303 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nievergelt, Y.: Perturbation analysis for circles, spheres, and generalized hyperspheres fitted to data by geometric total least-squares. Math. Comput. 73, 169–180 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  16. Perkins, W.A.: A model-based vision system for industrial parts. IEEE Trans. Comput. 27, 126–143 (1978)

    Article  MathSciNet  Google Scholar 

  17. Shakarji, C.: Least-squares fitting algorithms of the NIST algorithm testing system. J. Res. Natl. Inst. Stand. Technol. 103, 633–641 (1998)

    Article  Google Scholar 

  18. Spath, H.: Least-squares fitting by circles. Computing 57, 179–185 (1996)

    Article  MathSciNet  Google Scholar 

  19. Taubin, G.: Estimation of planar curves, surfaces and nonplanar space curves defined by implicit equations, with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13, 1115–1138 (1991)

    Article  Google Scholar 

  20. Trefethen, L., Bau III, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  21. Yuen, P.C., Feng, G.C.: A novel method for parameter estimation of digital arcs. Pattern Recognit. Lett. 17, 929–938 (1996)

    Article  Google Scholar 

  22. Zelniker, E., Clarkson, V.: A statistical analysis of the Delogne–Kåsa method for fitting circles. Digit. Signal Process. 16, 498–522 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

N.C. was partially supported by National Science Foundation, grant DMS-0969187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chernov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdul-Rahman, H., Chernov, N. Fast and Numerically Stable Circle Fit. J Math Imaging Vis 49, 289–295 (2014). https://doi.org/10.1007/s10851-013-0461-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0461-4

Keywords