Skip to main content
Log in

Convolution Products for Hypercomplex Fourier Transforms

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Hypercomplex Fourier transforms are increasingly used in signal processing for the analysis of higher-dimensional signals such as color images. A main stumbling block for further applications, in particular concerning filter design in the Fourier domain, is the lack of a proper convolution theorem. The present paper develops and studies two conceptually new ways to define convolution products for such transforms. As a by-product, convolution theorems are obtained that will enable the development and fast implementation of new filters for quaternionic signals and systems, as well as for their higher dimensional counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahri, M., Hitzer, E.: Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra \({\rm Cl}_{3,0}\). Adv. Appl. Clifford Algebras 16, 41–61 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Batard, T., Berthier, M., Saint-Jean, C.: Clifford-Fourier transform for color image processing. In: Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing for Engineering and Computer Science, pp. 135–161. Springer, London (2010)

    Chapter  Google Scholar 

  3. Batard, T., Berthier, M.: Clifford-Fourier transform and spinor representation of images. In: Hitzer, E., Sangwine, S. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets. TIM/Birkhauser (to appear)

  4. Bayro-Corrochano, E., Trujillo, N., Naranjo, M.: Quaternion Fourier descriptors for the preprocessing and recognition of spoken words using images of spatiotemporal representations. J. Math. Imaging Vis. 28, 179–190 (2007)

    Article  MathSciNet  Google Scholar 

  5. Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Research Notes in Mathematics, vol. 76. Pitman, Boston (1982)

    MATH  Google Scholar 

  6. Brackx, F., De Schepper, N., Sommen, F.: The Clifford-Fourier transform. J. Fourier Anal. Appl. 11, 669–681 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brackx, F., De Schepper, N., Sommen, F.: The two-dimensional Clifford-Fourier transform. J. Math. Imaging Vis. 26, 5–18 (2006)

    Article  MATH  Google Scholar 

  8. Brackx, F., De Schepper, N., Sommen, F.: The Fourier transform in Clifford analysis. Adv. Imaging Electron Phys. 156, 55–203 (2008)

    Article  Google Scholar 

  9. Bujack, R., Scheuermann, G., Hitzer, E.: A general geometric Fourier transform. In: Hitzer, E., Sangwine, S. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets. TIM/Birkhauser (to appear)

  10. Bujack, R., Scheuermann, G., Hitzer, E.: A general geometric Fourier transform convolution theorem. Adv. Appl. Clifford Algebras 23, 15–38 (2013). doi:10.1007/s00006-012-0338-4

    Article  MATH  MathSciNet  Google Scholar 

  11. Bülow, T., Sommer, G.: Hypercomplex signals—a novel extension of the analytic signal to the multidimensional case. IEEE Trans. Signal Process. 49, 2844–2852 (2001)

    Article  MathSciNet  Google Scholar 

  12. Coulembier, K., De Bie, H., Sommen, F.: Orthogonality of the Hermite polynomials in superspace and Mehler type formulae. Proc. Lond. Math. Soc. 103, 786–825 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. De Bie, H.: Clifford algebras, Fourier transforms and quantum mechanics. Math. Methods Appl. Sci. 35, 2198–2228 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. De Bie, H.: New techniques for the two-sided quaternionic Fourier transform. In: Proceedings of AGACSE (2012)

    Google Scholar 

  15. De Bie, H., De Schepper, N., Sommen, F.: The class of Clifford-Fourier transforms. J. Fourier Anal. Appl. 17, 1198–1231 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. De Bie, H., De Schepper, N.: The fractional Clifford-Fourier transform. Complex. Anal. Oper. Theory 6, 1047–1067 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. De Bie, H., De Schepper, N.: Fractional Fourier transforms of hypercomplex signals. Signal Image Video Process. 6, 381–388 (2012)

    Article  Google Scholar 

  18. De Bie, H., Ørsted, B., Somberg, P., Souček, V.: Dunkl operators and a family of realizations of \(\mathfrak {osp}(1|2)\). Trans. Am. Math. Soc. 364, 3875–3902 (2012)

    Article  MATH  Google Scholar 

  19. De Bie, H., Ørsted, B., Somberg, P., Souček, V.: The Clifford deformation of the Hermite semigroup. arXiv:1101.5551, 27 pp.

  20. De Bie, H., Sommen, F.: Vector and bivector Fourier transforms in Clifford analysis. In: Gürlebeck, K., Könke, C. (eds.) 18th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar, Germany (2009), 11 pp.

    Google Scholar 

  21. De Bie, H., Xu, Y.: On the Clifford-Fourier transform. Int. Math. Res. Not. 22, 5123–5163 (2011)

    Google Scholar 

  22. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. Mathematics and Its Applications, vol. 53. Kluwer Academic, Dordrecht (1992)

    Book  MATH  Google Scholar 

  23. Delsuc, M.A.: Spectral representation of 2D NMR spectra by hypercomplex numbers. J. Magn. Reson. 77, 119–124 (1988)

    Google Scholar 

  24. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. Morgan Kaufmann, Burlington (2007)

    Google Scholar 

  25. Ebling, J., Scheuermann, G.: Clifford convolution and pattern matching on vector fields. In: Proceedings of IEEE Visualization ’03, pp. 193–200. IEEE Comput. Soc., Los Alamitos (2003)

    Google Scholar 

  26. Ebling, J., Scheuermann, G.: Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. 11, 469–479 (2005)

    Article  Google Scholar 

  27. Ell, T.A.: Hypercomplex spectral transformations. Ph.D. Thesis. University of Minnesota, University Microfilms International Number 9231031 (1992)

  28. Ell, T.A.: Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems. In: Proc. 32nd IEEE Conf. on Decision and Control, San Antonio, TX, vols. 1–4, pp. 1830–1841 (1993)

    Google Scholar 

  29. Ell, T.A., Sangwine, S.J.: Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16, 22–35 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. International Series of Monographs on Chemistry. Oxford University Press, London (1987)

    Google Scholar 

  31. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1980)

    MATH  Google Scholar 

  32. Hitzer, E., Ablamowicz, R.: Geometric roots of −1 in Clifford algebras \(\mathcal{C} l_{p,q}\) with p+q≤4. Adv. Appl. Clifford Algebras 21, 121–144 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hitzer, E., Bahri, M.: Clifford Fourier transform on multivector fields and uncertainty principles for dimensions \(n=2\ (\operatorname{mod}4)\) and \(n=3\ (\operatorname{mod}4)\). Adv. Appl. Clifford Algebras 18, 715–736 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hitzer, E., Helmstetter, J., Ablamowicz, R.: Square roots of −1 in real Clifford algebras. In: Hitzer, E., Sangwine, S. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets. TIM/Birkhauser (to appear). arXiv:1204.4576v2, 31 pp.

  35. Hitzer, E., Sangwine, S.J.: The orthogonal 2D planes split of quaternions and steerable quaternion Fourier transformations. In: Hitzer, E., Sangwine, S. (eds.): Quaternion and Clifford Fourier Transforms and Wavelets. TIM/Birkhauser (to appear)

  36. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  37. Moxey, C.E., Sangwine, S.J., Ell, T.A.: Hypercomplex correlation techniques for vector images. IEEE Trans. Signal Process. 51, 1941–1953 (2003)

    Article  MathSciNet  Google Scholar 

  38. Mustard, D.: Fractional convolution. J. Aust. Math. Soc. Ser. B, Appl. Math 40, 257–265 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ozaktas, H., Zalevsky, Z., Kutay, M.: The Fractional Fourier Transform. Wiley, Chichester (2001)

    Google Scholar 

  40. Pei, S.-C., Ding, J.-J., Chang, J.-H.: Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT. IEEE Trans. Signal Process. 49, 2783–2797 (2001)

    Article  MathSciNet  Google Scholar 

  41. Rösler, M.: A positive radial product formula for the Dunkl kernel. Trans. Am. Math. Soc. 355, 2413–2438 (2003)

    Article  MATH  Google Scholar 

  42. Sangwine, S.J.: Color image edge detector based on quaternion convolution. Electron. Lett. 34, 969–971 (1998)

    Article  Google Scholar 

  43. Sangwine, S.J.: Fourier transforms of color images using quaternion, or hypercomplex, numbers. Electron. Lett. 32, 1979–1980 (1996)

    Article  Google Scholar 

  44. Sangwine, S.J., Ell, T.A.: The discrete Fourier transform of a color image. In: Blackledge, J.M., Turner, M.J. (eds.) Image Processing II Mathematical Methods, Algorithms and Applications, pp. 430–441. Horwood Publishing, Chichester (2000)

    Google Scholar 

  45. Sangwine, S.J., Ell, T.A.: Color image filters based on hypercomplex convolution. IEE Proc., Vis. Image Signal Process. 147, 89–93 (2000)

    Article  Google Scholar 

  46. Sommen, F.: Hypercomplex Fourier and Laplace transforms. I. Ill. J. Math. 26, 332–352 (1982)

    MATH  MathSciNet  Google Scholar 

  47. Sommen, F.: Special functions in Clifford analysis and axial symmetry. J. Math. Anal. Appl. 130(1), 110–133 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  48. Szegő, G.: Orthogonal Polynomials, 4th edn. Amer. Math. Soc. Colloq. Publ., vol. 23. Am. Math. Soc., Providence (1975)

    Google Scholar 

  49. Thangavelu, S., Xu, Y.: Convolution operator and maximal function for the Dunkl transform. J. Anal. Math. 97, 25–55 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Todd Ell and Stephen Sangwine for email communication about the qFT, as well as Eckhard Hitzer for communication about the GFT and proofreading Sect. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik De Bie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bujack, R., De Bie, H., De Schepper, N. et al. Convolution Products for Hypercomplex Fourier Transforms. J Math Imaging Vis 48, 606–624 (2014). https://doi.org/10.1007/s10851-013-0430-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0430-y

Keywords

Navigation