Skip to main content
Log in

Tensor-SIFT Based Earth Mover’s Distance for Contour Tracking

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Contour tracking in complex environments is a difficult problem due to the cluttered backgrounds, illumination changes, occlusion and camera viewpoint variations etc. This paper presents a region functional based on the Earth Mover’s Distance (EMD), computation of which is mathematically modeled as the transportation problem (TP), for robust contour tracking in the challenging conditions. Formulation of EMD-based functional can be described as variational EMD (VEMD) since the contour curve function is involved for optimization. Minimizing the EMD-based functional is nontrivial and we develop a two-phase method for its optimization. In the first phase, letting the candidate contour be fixed, we seek the best solution to the TP by the Simplex algorithm. Then through the shape derivative theory, we make a perturbation analysis of the contour around the best solution to the TP. As a result we obtain a partial differential equation (PDE) that is solved by the level-set algorithm. The two-phase procedure iterates until the appropriate stopping criterions are satisfied. Alongside the EMD-based functional formulation, we introduce a dimensionality reduction method by tensor decomposition, achieving a low-dimensional Tensor-SIFT features for object representation. Applicable to both the color and gray-level images, Tensor-SIFT features are distinctive, insensitive to illumination and viewpoint changes. Finally, we develop an integrated algorithm that combines various techniques, e.g. the Simplex algorithm, narrow-band level set and fast marching algorithms. Particularly, we provide a method for the level-set initialization between two successive frames and the criterions for stopping the iterative functional optimization. Experiments in challenging image sequences show that the proposed work has promising performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aubert, G., Barlaud, M., Faugeras, O., Jehan-Besson, S.: Image segmentation using active contours: calculus of variations or shape gradients? SIAM J. Appl. Math. 63(6), 2128–2154 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bajramovic, F., Grabl, C., Denzler, J.: Efficient combination of histograms for real-time tracking using mean-shift and trust-region optimization. In: Proc. 27th DAGM Symposium on Pattern Recognition, pp. 254–261 (2005)

    Google Scholar 

  3. Blake, A., Isard, M.: Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion. Springer, Berlin (1998)

    Google Scholar 

  4. Brox, T., Rousson, M., Deriche, R., Weickert, J.: Colour, texture, and motion in level set based segmentation and tracking. Image Vis. Comput. 28, 376–390 (2010)

    Article  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  6. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  7. Collins, R.T.: Mean-shift blob tracking through scale space. In: Proc. IEEE Conf. Comp. Vis. Patt. Recog., pp. 234–241 (2003)

    Google Scholar 

  8. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proc. IEEE Conf. Comp. Vis. Patt. Recog., pp. 142–149 (2000)

    Google Scholar 

  9. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–575 (2003)

    Article  Google Scholar 

  10. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007)

    Article  Google Scholar 

  11. Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of keypoints. In: ECCV Workshop on Statistical Learning in Computer Vision, pp. 1–22 (2004)

    Google Scholar 

  12. Delfour, M.C., Zolesio, J.-P.: Shapes and Geometries: Analysis, Differential Calculus, and Optimization. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  13. Faber, N.K.M., Bro, R., Hopke, P.K.: Recent developments in cande-comp/parafac algorithms: A critical review. Chemom. Intell. Lab. Syst. 65, 119–137 (2003)

    Article  Google Scholar 

  14. Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)

    Article  Google Scholar 

  15. Fleet, D.J., Weiss, Y.: Handbook of Mathematical Models in Computer Vision. Springer, Berlin (2006). Chap. 15, Chapter Optical Flow Estimation

    Google Scholar 

  16. Freedman, D., Zhang, T.: Active contours for tracking distributions. IEEE Trans. Image Process. 13(4), 518–526 (2004)

    Article  Google Scholar 

  17. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comput. Vis. 60, 225–240 (2004)

    Article  Google Scholar 

  18. Herbulot, A., Jehan-Besson, S., Duffner, S., Barlaud, M., Aubert, G.: Segmentation of vectorial image features using shape gradients and information measures. J. Math. Imaging Vis. 25(3), 365–386 (2006)

    Article  MathSciNet  Google Scholar 

  19. Irani, M., Anandan, P.: A unified approach to moving object detection in 2d and 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 20(6), 577–589 (1998)

    Article  Google Scholar 

  20. Jehan-Besson, S., Barlaud, M., Aubert, G., Faugeras, O.: Shape gradients for histogram segmentation using active contours. In: Proc. of the Int. Conf. on Computer Vision, Washington, DC, USA, p. 408. IEEE Computer Society, Los Alamitos (2003)

    Chapter  Google Scholar 

  21. Kantorovich, L.V.: On the translocation of masses. Dokl. Akad. Nauk SSSR 37, 199–201 (1942)

    Google Scholar 

  22. Kass, M., Witkin, A.P., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  23. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proc. IEEE Conf. Comp. Vis. Patt. Recog., Washington, DC, USA, pp. 2169–2178. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  25. Li, F.-F., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: Proc. IEEE Conf. Comp. Vis. Patt. Recog., Washington, DC, USA, pp. 524–531. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  26. Ling, H., Okada, K.: An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 840–853 (2007)

    Article  Google Scholar 

  27. Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: Sift flow: dense correspondence across different scenes. In: Proc. of European Conf. on Computer Vision, pp. 28–42. Springer, Berlin (2008)

    Google Scholar 

  28. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of the Int. Conf. on Computer Vision, Washington, DC, USA, p. 1150. IEEE Computer Society, Los Alamitos (1999)

    Google Scholar 

  29. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  30. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Springer, Berlin (2007)

    Google Scholar 

  31. McKenna, S.J., Raja, Y., Gong, S.: Tracking colour objects using adaptive mixture models. Image Vis. Comput. 17(3–4), 225–231 (1999)

    Article  Google Scholar 

  32. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  33. Monge, G.: Mémoire sur la théorie des déblais et des remblais. In: Hist. de l’Acad. des Sciences de Paris, pp. 666–704 (1781)

    Google Scholar 

  34. Mutch, J., Lowe, D.G.: Multiclass object recognition with sparse, localized features. In: Proc. IEEE Conf. Comp. Vis. Patt. Recog., New York, NY, pp. 11–18 (2006, June)

    Google Scholar 

  35. Ni, K., Bresson, X., Chan, T., Esedoglu, S.: Local histogram based segmentation using the wasserstein distance. Int. J. Comput. Vis. 84(1), 97–111 (2009)

    Article  Google Scholar 

  36. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2002)

    Google Scholar 

  37. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 266–280 (2000)

    Article  Google Scholar 

  39. Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. Vis. Commun. Image Represent. 13, 249–268 (2002)

    Article  Google Scholar 

  40. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for motion estimation and tracking. Comput. Vis. Image Underst. 97(3), 259–282 (2005)

    Article  Google Scholar 

  41. Parlett, B.N.: The Symmetric Eigenvalue Problem. Upper Saddle River. Prentice-Hall, New York (1998)

    Book  Google Scholar 

  42. Pele, O., Werman, M.: A linear time histogram metric for improved sift matching. In: Proc. of Eur. Conf. Comp. Vis, pp. 495–508 (2008)

    Google Scholar 

  43. Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: Proc. Int. Conf. Comp. Vis. (2009)

    Google Scholar 

  44. Peleg, S., Werman, M., Rom, H.: A unified approach to the change of resolution: space and gray-level. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 739–742 (1989)

    Article  Google Scholar 

  45. Precioso, F., Barlaud, M., Blu, T., Unser, M.: Robust real-time segmentation of images and videos using a smooth-spline snake-based algorithm. IEEE Trans. Image Process. 14(7), 910–924 (2005)

    Article  Google Scholar 

  46. Rachev, S., Rüschendorf, L.: Mass Transportation Problems. Vol. I: Theory, Vol. II: Applications. Probability and Its Application. Springer, Berlin (1998)

    Google Scholar 

  47. Rathi, Y., Vaswani, N., Tannenbaum, A., Yezzi, A.: Tracking deforming objects using particle filtering for geometric active contours. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1470–1475 (2007)

    Article  Google Scholar 

  48. Ronfard, R.: Region-based strategies for active contour models. Int. J. Comput. Vis. 13(2), 229–251 (1994)

    Article  Google Scholar 

  49. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  50. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  51. Shirdhonkar, S., Jacobs, D.: Approximate earth mover’s distance in linear time. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, pp. 1–8 (2008)

    Google Scholar 

  52. Sokolowski, J., Zolesio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  53. Turk, M., Pentland, A.: A unified approach to the change of resolution: space and gray-level. J. Cogn. Neurosci. 3(1), 71–862 (1991)

    Article  Google Scholar 

  54. Vasilescu, M., Terzopoulos, D.: Multilinear analysis of image ensembles: tensorfaces. In: Proc. of European Conf. on Computer Vision, p. 447–460. Springer, Berlin (2002)

    Google Scholar 

  55. Vasilescu, M., Terzopoulos, D.: Multilinear subspace analysis for image ensembles. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, pp. 93–99. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  56. Wang, H., Ahuja, N.: A tensor approximation approach to dimensionality reduction. Int. J. Comput. Vis. 76(3), 217–229 (2008)

    Article  Google Scholar 

  57. Wu, C.: SiftGPU: A GPU Implementation of Scale Invariant Feature Transform (SIFT) (2007). http://cs.unc.edu/~ccwu/siftgpu

  58. Yan, K., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proc. IEEE Conf. Comp. Vis. Patt. Recog., pp. 506–513. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  59. Zhang, T., Freedman, D.: Improving performance of distribution tracking through background mismatch. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 282–287 (2005)

    Article  Google Scholar 

  60. Zhao, Q., Yang, Z., Tao, H.: Differential earth mover’s distance with its applications to visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 274–287 (2010)

    Article  Google Scholar 

  61. Zhong, Y., Jain, A.K., Dubuisson-Jolly, M.-P.: Object tracking using deformable templates. IEEE Trans. Pattern Anal. Mach. Intell. 22(5), 544–549 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their helpful comments which improved both the quality and presentation of this paper. The research was supported by the National Natural Science Foundation of China (60973080,61170149), Program for New Century Excellent Talents in University from Chinese Ministry of Education (NCET-10-0151), Key Project by Chinese Ministry of Education (210063). It was also supported by High-level professionals (innovative teams) of Heilongjiang University (Hdtd2010-07). We thank Nannan Zhao for writing the code to implement EMD computation via the simplex algorithm, and Qilong Wang for assistance in conducting experiments in Sect. 6.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peihua Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P. Tensor-SIFT Based Earth Mover’s Distance for Contour Tracking. J Math Imaging Vis 46, 44–65 (2013). https://doi.org/10.1007/s10851-012-0369-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0369-4

Keywords

Navigation