Skip to main content
Log in

Extensions of Invariant Signatures for Object Recognition

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

A refinement of the method of differential invariant signatures for object recognition is presented. The value of the method lies in its compromise between local and global identifying properties, thereby allowing us to distinguish non-congruent curves whose Euclidean signatures have identical trace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. “Non-overlapping” means they have at most one endpoint in common.

  2. In [10], the older term “classifying submanifold” is used in place of “signature submanifold”.

  3. As noted above, one could experiment with other (weighted) norms, but the Euclidean norm suffices for our purposes.

References

  1. Boutin, M.: Numerically invariant signature curves. Int. J. Comput. Vis. 40, 235–248 (2000)

    Article  MATH  Google Scholar 

  2. Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26, 107–135 (1998)

    Article  Google Scholar 

  3. Cartan, É.: Les problèmes d’équivalence. In: Oeuvres Complètes, part II, vol. 2, pp. 1311–1334. Gauthier-Villars, Paris (1953)

    Google Scholar 

  4. Fels, M., Olver, P.J.: Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math. 55, 127–208 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Freedman, M.H., He, Z.-X., Wang, Z.: Möbius energy of knots and unknots. Ann. Math. 139, 1–50 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guggenheimer, H.W.: Differential Geometry. McGraw-Hill, New York (1963)

    MATH  Google Scholar 

  7. Hoff, D., Olver, P.J.: Automatic solution of jigsaw puzzles. Preprint, University of Minnesota (2011)

  8. Hoffman, D.D., Richards, W.: Parts of recognition. Cognition 18, 65–96 (1984)

    Article  Google Scholar 

  9. Musso, E., Nicolodi, L.: Invariant signature of closed planar curves. J. Math. Imaging Vis. 35, 68–85 (2009)

    Article  MathSciNet  Google Scholar 

  10. Olver, P.J.: Equivalence, Invariants, and Symmetry. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  11. Olver, P.J., Sapiro, G., Tannenbaum, A.: Differential invariant signatures and flows in computer vision: a symmetry group approach. In: Ter Haar Romeny, B.M. (ed.) Geometry-Driven Diffusion in Computer Vision, pp. 255–306. Kluwer Academic, Dordrecht (1994)

    Google Scholar 

  12. Richards, W., Dawson, B., Whittington, D.: Encoding contour shape by curvature extrema. J. Opt. Soc. Am. A 3, 1483–1491 (1986)

    Article  Google Scholar 

  13. Wang, Y.: Smoothing Splines: Methods and Applications. Monographs Stat. Appl. Probability, vol. 121. CRC Press, Boca Raton (2011)

    Book  MATH  Google Scholar 

  14. Wu, K., Levine, M.D.: 3D part segmentation using simulated electrical charge distributions. IEEE Trans. Pattern Anal. Mach. Intell. 19, 1223–1235 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Olver.

Additional information

Supported in part by NSF Grant DMS 08–07317.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoff, D.J., Olver, P.J. Extensions of Invariant Signatures for Object Recognition. J Math Imaging Vis 45, 176–185 (2013). https://doi.org/10.1007/s10851-012-0358-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0358-7

Keywords

Navigation