Skip to main content
Log in

Links Between Image Segmentation Based on Optimum-Path Forest and Minimum Cut in Graph

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Image segmentation can be elegantly solved by optimum-path forest and minimum cut in graph. Given that both approaches exploit similar image graphs, some comparative analysis is expected between them. We clarify their differences and provide their comparative analysis from the theoretical point of view, for the case of binary segmentation (object/background) in which hard constraints (seeds) are provided interactively. Particularly, we formally prove that some optimum-path forest methods from two distinct region-based segmentation paradigms, with internal and external seeds and with only internal seeds, indeed minimize some graph-cut measures. This leads to a proof of the necessary conditions under which the optimum-path forest algorithm and the min-cut/max-flow algorithm produce exactly the same segmentation result, allowing a comparative analysis between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allène, C., Audibert, J.Y., Couprie, M., Cousty, J., Keriven, R.: Some links between min-cuts, optimal spanning forests and watersheds. In: Mathematical Morphology and its Applications to Signal and Image Processing (ISMM), pp. 253–264. MCT/INPE (2007)

  2. Audigier, R., Lotufo, R.A.: The tie-zone watershed: Definition, algorithm and applications. In: Proceedings of IEEE International Conference on Image Processing (ICIP 05), pp. 654–657 (2005)

  3. Audigier, R., Lotufo, R.A.: Watershed by image foresting transform, tie-zone, and theoretical relationships with other watershed definitions. In: Proc. of the 8th Intl. Symposium on Mathematical Morphology (ISMMâ07), pp. 277–288 (2007)

  4. Audigier, R., Lotufo, R.A.: Seed-relative segmentation robustness of watershed and fuzzy connectedness approaches. In: XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), pp. 61–68. Belo Horizonte, MG Oct 2007. IEEE CPS

  5. Bai, X., Sapiro, G.: Distance cut: interactive segmentation and matting of images and videos. In: IEEE Intl. Conf. on Image Processing (ICIP), vol. 2, pp. 249–252. San Antonio, Texas (2007)

  6. Bergo, F.P.G., Falcão, A.X., Miranda, P.A.V., Rocha, L.M.: Automatic image segmentation by tree pruning. J. Math. Imaging Vis. 29(2–3), 141–162 (2007)

    Article  Google Scholar 

  7. Beucher, S., Meyer, F.: The morphological approach to segmentation: The watershed transformation. In: Mathematical Morphology in Image Processing, pp. 433–481. Dekker, New York (1993). Chap. 12

    Google Scholar 

  8. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

  9. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  10. Boykov, Y.Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: International Conference on Computer Vision (ICCV), vol. 1, pp. 105–112 (2001)

  11. Carballido-Gamio, J., Belongie, S.J., Majumdar, S.: Normalized cuts in 3D for spinal MRI segmentation. IEEE Trans. Med. Imag. 23(1), 36–44 (2004)

    Article  Google Scholar 

  12. Ciesielski, K.C., Udupa, J.K.: Affinity functions: recognizing essential parameters in fuzzy connectedness based image segmentation. In: Proc. of SPIE on Medical Imaging: Image Processing, vol. 7259 (2009)

  13. Ciesielski, K.C., Udupa, J.K., Saha, P.K., Zhuge, Y.: Iterative relative fuzzy connectedness for multiple objects with multiple seeds. Comput. Vis. Image Underst. 107(3), 160–182 (2007)

    Article  Google Scholar 

  14. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watersheds, minimum spanning forests, and the drop of water principle. Technical Report IGM2007-01, Université de Marne-la-Vallée (2007)

  15. Cox, I.J., Rao, S.B., Zhong, Y.: Ratio regions: a technique for image segmentation. In: Intl. Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 557–564 (1996)

  16. Falcão, A.X., Bergo, F.P.G.: Interactive volume segmentation with differential image foresting transforms. IEEE Trans. Med. Imag. 23(9), 1100–1108 (2004)

    Article  Google Scholar 

  17. Falcão, A.X., Udupa, J.K., Miyazawa, F.K.: An ultra-fast user-steered image segmentation paradigm: Live-wire-on-the-fly. IEEE Trans. Med. Imag. 19(1), 55–62 (2000)

    Article  Google Scholar 

  18. Falcão, A.X., da Cunha, B.S., Lotufo, R.A.: Design of connected operators using the image foresting transform. In: Proc. of SPIE on Medical Imaging, vol. 4322, pp. 468–479 (Feb 2001)

  19. Falcão, A.X., Costa, L.F., da Cunha, B.S.: Multiscale skeletons by image foresting transform and its applications to neuromorphometry. Pattern Recogn. 35(7), 1571–1582 (2002)

    Article  MATH  Google Scholar 

  20. Falcão, A.X., Bergo, F.P.G., Miranda, P.A.V.: Image segmentation by tree pruning. In: XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), pp. 65–71. IEEE Press, New York (2004)

    Chapter  Google Scholar 

  21. Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: Theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29 (2004)

    Article  Google Scholar 

  22. Falcão, A.X., Miranda, P.A.V., Rocha, A.: A linear-time approach for image segmentation using graph-cut measures. In: 8th Intl. Conf. on Advanced Concepts for Intelligent Vision Systems (ACIVS), LNCS, vol. 4179, pp. 138–149. Antwerp, Belgium, Springer, Berlin (2006)

    Chapter  Google Scholar 

  23. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  24. Fowlkes, C., Belongie, S., Malik, J.: Efficient spatiotemporal grouping using the Nyström method. In: Intl. Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 231–238 (2001)

  25. Grau, V., Mewes, A.U.J., Alcaniz, M., Kikinis, R., Warfield, S.K.: Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imag. 23(4), 447–458 (2004)

    Article  Google Scholar 

  26. Herman, G.T., Carvalho, B.M.: Multiseeded segmentation using fuzzy connectedness. IEEE Trans. Pattern Anal. Mach. Intell. 23(5), 460–474 (2001)

    Article  Google Scholar 

  27. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  28. Lei, T., Udupa, J.K., Saha, P.K., Odhner, D.: Artery-vein separation via MRA—An image processing approach. IEEE Trans. Med. Imag. 20(8) (2001)

  29. Liang, L., Rehm, K., Woods, R.P., Rottenberg, D.A.: Automatic segmentation of left and right cerebral hemispheres from MRI brain volumes using the graph cuts algorithm. NeuroImage 34(3), 1160–1170 (2007)

    Article  Google Scholar 

  30. Lotufo, R.A., Falcão, A.X.: The ordered queue and the optimality of the watershed approaches. In: Mathematical Morphology and its Applications to Image and Signal Processing. vol. 18, pp. 341–350. Kluwer Academic, Dordrecht (2000)

    Chapter  Google Scholar 

  31. Miranda, P.A.V., Falcão, A.X., Rocha, A., Bergo, F.P.G.: Object delineation by κ-connected components. EURASIP J. Adv. Signal Process. 2008, 467928 (2008). doi:10.1155/2008/467928

    Article  Google Scholar 

  32. Miranda, P.A.V., Falcão, A.X., Udupa, J.K.: CLOUDS: A model for synergistic image segmentation. In: Proc. of the 5th IEEE Intl. Symp. on Biomedical Imaging: From Nano to Macro (ISBI), pp. 209–212. Paris, France, May 14–17th, 2008

  33. Miranda, P.A.V., Falcão, A.X., Udupa, J.K.: Synergistic arc-weight estimation for interactive image segmentation using graphs. Technical Report IC-08-21, Institute of Computing, University of Campinas (Sep 2008)

  34. Moonis, G., Liu, J., Udupa, J.K., Hackney, D.B.: Estimation of tumor volume with fuzzy-connectedness segmentation of MR images. Am. J. Neuroradiol. 23, 356–363 (2002)

    Google Scholar 

  35. Nguyen, H.T., Worring, M., van den Boomgaard, R.: Watersnakes: energy-driven watershed segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25(3), 330–342 (2003)

    Article  Google Scholar 

  36. Protiere, A., Sapiro, G.: Interactive image segmentation via adaptive weighted distances. IEEE Trans. Image Process. 16(4), 1046–1057 (2007)

    Article  MathSciNet  Google Scholar 

  37. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: Definitions, algorithms and parallelization strategies. Fundam. Inform. 41, 187–228 (2000)

    MATH  MathSciNet  Google Scholar 

  38. Sá, A.M., Vieira, M.B., Montenegro, A.A., Carvalho, P.C.P., Velho, L.: Actively illuminated objects using graph-cuts. In: XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), pp. 45–52. IEEE Press, New York (2006)

    Chapter  Google Scholar 

  39. Saha, P.K., Udupa, J.K.: Relative fuzzy connectedness among multiple objects: theory, algorithms, and applications in image segmentation. Comput. Vis. Image Underst. 82, 42–56 (2001)

    Article  MATH  Google Scholar 

  40. Sarkar, S., Boyer, K.L.: Quantitative measures of change based on feature organization: eigenvalues and eigenvectors. In: Intl. Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 478–483 (1996)

  41. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  42. Tsai, Y.P., Lai, C.C., Hung, Y.P., Shih, Z.C.: A Bayesian approach to video object segmentation via merging 3-D watershed volumes. IEEE Trans. Circuits Syst. Video Technol. 15(1), 175–180 (2005)

    Article  Google Scholar 

  43. Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Models Image Process. 58, 246–261 (1996)

    Article  Google Scholar 

  44. Udupa, J.K., Saha, P.K.: Fuzzy connectedness and image segmentation. Proc. IEEE 91(10), 1649–1669 (2003)

    Article  Google Scholar 

  45. Udupa, J.K., Saha, P.K., Lotufo, R.A.: Relative fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1485–1500 (2002)

    Article  Google Scholar 

  46. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with connectivity priors. In: Computer Vision and Pattern Recognition, pp. 1–8, Jun 2008

  47. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: International Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 511–518 (2001)

  48. Wang, S., Siskind, J.M.: Image segmentation with minimum mean cut. In: International Conference on Computer Vision (ICCV), vol. 1, pp. 517–525, Jul 2001

  49. Wang, S., Sinkind, J.M.: Image segmentation with ratio cut. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 675–690 (2003)

    Article  Google Scholar 

  50. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its applications to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–1113 (1993)

    Article  Google Scholar 

  51. Zheng, D., Zhao, Y., Wang, J.: An efficient method of license plate location. Pattern Recogn. Lett. 26(15), 2431–2438 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre X. Falcão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda, P.A.V., Falcão, A.X. Links Between Image Segmentation Based on Optimum-Path Forest and Minimum Cut in Graph. J Math Imaging Vis 35, 128–142 (2009). https://doi.org/10.1007/s10851-009-0159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0159-9

Keywords

Navigation