Skip to main content

Advertisement

Log in

Host–guest systems based on pH-sensitive acyclic cucurbit[n]urils for controlled release of camptothecin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Stimuli-responsive drug delivery systems may provide an effective way to treat cancer as they can release cargoes regularly according to changes in the human microenvironment. In this work, we design and prepare acid-controlled release complexes of camptothecin with three pH-sensitive acyclic cucurbit[n]urils. The inclusion complexes have been characterized by 1H and 2D nuclear magnetic resonance, X-ray powder diffraction, and phase solubility diagram. Cells incubated with complexes have been analyzed by high-content analysis, and cytotoxicity tests have been completed by MTT assay. The results showed that complexes with different binding constants can release the drug substance in the physiological pH environment of cancer cells, maintain good anticancer activity, and have low cytotoxicity. This provides a strategy about targeted and responsive systems of CPT for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ma, D., Hettiarachchi, G., Nguyen, D., Zhang, B., Wittenberg, J.B., Zavalij, P.Y., Briken, V., Isaacs, L.: Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals. Nat. Chem. 4(6), 503–510 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. Ganapati, S., Zavalij, P.Y., Eikermann, M., Isaacs, L.: In vitro selectivity of an acyclic cucurbit[n]uril molecular container towards neuromuscular blocking agents relative to commonly used drugs. Org. Biomol. Chem. 14(4), 1277–1287 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. Minami, T., Esipenko, N.A., Zhang, B., Kozelkova, M.E., Isaacs, L., Nishiyabu, R., Kubo, Y., Anzenbacher Jr., P.: Supramolecular sensor for cancer-associated nitrosamines. J. Am. Chem. Soc. 134(49), 20021–20024 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. Ma, D., Zhang, B., Hoffmann, U., Sundrup, M.G., Eikermann, M., Isaacs, L.: Acyclic cucurbit[n]uril-type molecular containers bind neuromuscular blocking agents in vitro and reverse neuromuscular block in vivo. Angew. Chem. Int. Ed. Engl. 51(45), 11358–11362 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, B., Isaacs, L.: Acyclic cucurbit[n]uril-type molecular containers: influence of aromatic walls on their function as solubilizing excipients for insoluble drugs. J. Med. Chem. 57(22), 9554–9563 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lu, X., Isaacs, L.: Uptake of hydrocarbons in aqueous solution by encapsulation in acyclic cucurbit[n]uril-type molecular containers. Angew. Chem. 55(28), 8076–8080 (2016)

    Article  CAS  Google Scholar 

  7. Gilberg, L., Zhang, B., Zavalij, P.Y., Sindelar, V., Isaacs, L.: Acyclic cucurbit[n]uril-type molecular containers: influence of glycoluril oligomer length on their function as solubilizing agents. Org. Biomol. Chem. 13(13), 4041–4050 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, J., Liu, Y., Mao, D., Ma, D.: Acyclic cucurbit[n]uril conjugated dextran for drug encapsulation and bioimaging. Chem. Commun. 53(62), 8739–8742 (2017)

    Article  CAS  Google Scholar 

  9. Diaz-Gil, D., Haerter, F., Falcinelli, S., Ganapati, S., Hettiarachchi, G.K., Simons, J.C., Zhang, B., Grabitz, S.D., Moreno Duarte, I., Cotten, J.F., Eikermann-Haerter, K., Deng, H., Chamberlin, N.L., Isaacs, L., Briken, V., Eikermann, M.: A novel strategy to reverse general anesthesia by scavenging with the acyclic cucurbit[n]uril-type molecular container calabadion 2. Anesthesiology 125(2), 333–345 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma, D., Zavalij, P.Y., Isaacs, L.: Acyclic cucurbit[n]uril congeners are high affinity hosts. J. Org. Chem. 75(14), 4786–4795 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. Dai, L., Wu, W., Liang, W., Chen, W., Yu, X., Ji, J., Xiao, C., Yang, C.: Enhanced chiral recognition by γ-cyclodextrin–cucurbit [6] uril-cowheeled [4] pseudorotaxanes. Chem. Commun. 54(21), 2643–2646 (2018)

    Article  CAS  Google Scholar 

  12. Yan, Z., Huang, Q., Liang, W., Yu, X., Zhou, D., Wu, W., Chruma, J.J., Yang, C.: Enantiodifferentiation in the photoisomerization of (z, z)-1, 3-cyclooctadiene in the cavity of γ-cyclodextrin–curcubit [6] uril-wheeled [4] rotaxanes with an encapsulated photosensitizer. Org. Lett. 19(4), 898–901 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. Mao, D., Liang, Y., Liu, Y., Zhou, X., Ma, J., Jiang, B., Liu, J., Ma, D.: Acid-labile acyclic cucurbit[n]uril molecular containers for controlled release. Angew. Chem. Int. Ed. Engl. 56(41), 12614–12618 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. Stubbs, M., Mcsheehy, P.M.J., Griffiths, J.R., Bashford, C.L.: Causes and consequences of tumour acidity and implications for treatment. Mol. Med. Today 6(1), 15–19 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. Raghunand, N., He, X., Sluis, R.V., Mahoney, B., Baggett, B., Taylor, C.W., Painemurrieta, G., Roe, D., Bhujwalla, Z.M., Gillies, R.J.: Enhancement of chemotherapy by manipulation of tumour pH. Br. J. Cancer 80(7), 1005–1011 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wall, M., Wani, M., Cook, C., Palmer, K., Sim, G.: The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc. 88(16), 3888–3890 (1996)

    Article  Google Scholar 

  17. Kawato, Y., Furuta, T., Aonuma, M., Yasuoka, M., Yokokura, T., Matsumoto, K.: Antitumor activity of a camptothecin derivative, CPT-11, against human tumor xenografts in nude mice. Cancer Chemother. Pharmacol. 28(3), 192–198 (1991)

    Article  CAS  PubMed  Google Scholar 

  18. Min, K.H., Park, K., Kim, Y.S., Bae, S.M., Lee, S., Jo, H.G., Park, R.W., Kim, I.S., Jeong, S.Y., Kim, K., Kwon, I.C.: Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J. Control Release 127(3), 208–218 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. Tang, X.J., Han, M., Yang, B., Shen, Y.Q., He, Z.G., Xu, D.H., Gao, J.Q.: Nanocarrier improves the bioavailability, stability and antitumor activity of camptothecin. Int. J. Pharm. 477(1–2), 536–545 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. Kusari, S., Zühlke, S., Spiteller, M.: An endophytic fungus from camptotheca acuminata that produces camptothecin and analogues. J. Nat. Prod. 72(1), 2–7 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Dong, N., Xue, S.-F., Zhu, Q.-J., Tao, Z., Zhao, Y., Yang, L.-X.: Cucurbit[n]urils (n = 7, 8) binding of camptothecin and the effects on solubility and reactivity of the anticancer drug. Supramol. Chem. 20(7), 663–671 (2008)

    Article  CAS  Google Scholar 

  22. Martins, S., Tho, I., Reimold, I., Fricker, G., Souto, E., Ferreira, D., Brandl, M.: Brain delivery of camptothecin by means of solid lipid nanoparticles: formulation design, in vitro and in vivo studies. Int. J. Pharm. 439(1–2), 49–62 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Y., Chen, X., Ding, J., Yu, L., Ma, D., Ding, J.: Improved solubility and bioactivity of camptothecin family antitumor drugs with supramolecular encapsulation by water-soluble pillar[6]arene. ACS Omega 2(8), 5283–5288 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, X.Q., Wen, H.Y., Dong, H.Q., Xue, W.M., Pauletti, G.M., Cai, X.J., Xia, W.J., Shi, D., Li, Y.Y.: Self-assembling nanomicelles of a novel camptothecin prodrug engineered with a redox-responsive release mechanism. Chem. Commun. 47(30), 8647–8649 (2011)

    Article  CAS  Google Scholar 

  25. Watanabe, M., Kawano, K., Toma, K., Hattori, Y., Maitani, Y.: In vivo antitumor activity of camptothecin incorporated in liposomes formulated with an artificial lipid and human serum albumin. J. Control Release 127(3), 231–238 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. Oberlies, N.H., Kroll, D.J.: Camptothecin and taxol: historic achievements in natural products research. J. Nat. Prod. 67(2), 129–135 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. Sirikantaramas, S., Yamazaki, M., Saito, K.: Mutations in topoisomerase i as a self-resistance mechanism coevolved with the production of the anticancer alkaloid camptothecin in plants. Proc. Natl. Acad. Sci. USA 105(18), 6782–6786 (2008)

    Article  PubMed  Google Scholar 

  28. Liu, L.F., Pu, D., Lin, C.T., Arpa, P.D., Wu, J.: Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci. 803(1), 44–49 (1996)

    Article  CAS  PubMed  Google Scholar 

  29. Soukasene, S., Toft, D.J., Moyer, T.J., Lu, H., Lee, H.K., Standley, S.M., Cryns, V.L., Stupp, S.I.: Antitumor activity of peptide amphiphile nanofiber-encapsulated camptothecin. ACS Nano 5(11), 9113 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Venditto, V.J., Simanek, E.E.: Cancer therapies utilizing the camptothecins: a review of in vivo literature. Mol. Pharm. 7(2), 307 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, Y.Q., Li, W.Q., Morris-Natschke, S.L., Qian, K., Yang, L., Zhu, G.X., Wu, X.B., Chen, A.L., Zhang, S.Y., Nan, X., Lee, K.H.: Perspectives on biologically active camptothecin derivatives. Med. Res. Rev. 35(4), 753–789 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wani, M.C.: Camptothecin and taxol—from nature to bench to bedside. Hamdan Med. J. 8(1), 1–13 (2015)

    Article  Google Scholar 

  33. Cheng, Y., Li, M., Xu, T.: Potential of poly(amidoamine) dendrimers as drug carriers of camptothecin based on encapsulation studies. Eur. J. Med. Chem. 43(8), 1791–1795 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. Gavvala, K., Sengupta, A., Hazra, P.: Modulation of photophysics and pKa shift of the anti-cancer drug camptothecin in the nanocavities of supramolecular hosts. ChemPhysChem 14(3), 532–542 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. Liao, R., Zhao, Y., Liao, X., Liu, M., Gao, C., Yang, J., Yang, B.: Folic acid-polyamine-β-cyclodextrin for targeted delivery of scutellarin to cancer cells. Polym. Adv. Technol. 26(5), 487–494 (2015)

    Article  CAS  Google Scholar 

  36. Zhang, B., Zavalij, P.Y., Isaacs, L.: Acyclic CB[n]-type molecular containers: effect of solubilizing group on their function as solubilizing excipients. Org. Biomol. Chem. 12(15), 2413–2422 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, Y., Fukushima, S., Bae, Y., Hiki, S., Ishii, T., Kataoka, K.: A protein nanocarrier from charge-conversion polymer in response to endosomal pH. J. Am. Chem. Soc. 129(17), 5362–5363 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Yunnan Applied Basic Research Projects (Nos. 2018FA047 and 2018FB018), and the National Natural Science Foundation of China (NNSFC) (Nos. 21362016, 21642001, 21361014 and 21302074), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 679 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Yang, L., Liao, X. et al. Host–guest systems based on pH-sensitive acyclic cucurbit[n]urils for controlled release of camptothecin. J Incl Phenom Macrocycl Chem 95, 159–168 (2019). https://doi.org/10.1007/s10847-019-00935-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00935-5

Keywords

Navigation