Skip to main content
Log in

Recent advances in anion recognition

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

This micro review covers recent advances in anion recognition, such as selective developments in the receptor design. Applications to which anion receptors can be applied, for example anion extraction and transport, are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2

Similar content being viewed by others

References

  1. Gale, P.A., Howe, E.N.W., Wu, X.: Anion receptor chemistry. Chem 1(3), 351–422 (2016). doi:10.1016/j.chempr.2016.08.004

    Article  CAS  Google Scholar 

  2. Wenzel, M., Hiscock, J.R., Gale, P.A.: Anion receptor chemistry: highlights from 2010. Chem. Soc. Rev. 41, 480–520 (2012)

    Article  CAS  Google Scholar 

  3. Gale, P.A., Busschaert, N., Haynes, C.J.E., Karagiannidis, L.E., Kirby, I.L.: Anion receptor chemistry: highlights from 2011 and 2012. Chem. Soc. Rev. 43(1), 205–241 (2014). doi:10.1039/c3cs60316d

    Article  CAS  Google Scholar 

  4. Zwicker, V.E., Liu, X., Yuen, K.K.Y., Jolliffe, K.A.: Triazole–containing zinc(II)dipicolylamine-functionalised peptides as highly selective pyrophosphate sensors in physiological media. Supramol. Chem. 28(1–2), 192–200 (2016). doi:10.1080/10610278.2015.1122789

    Article  CAS  Google Scholar 

  5. Zhong, D.-C., Lu, T.-B.: Molecular recognition and activation by polyaza macrocyclic compounds based on host-guest interactions. Chem. Commun. 52(68), 10322–10337 (2016). doi:10.1039/c6cc03660k

    Article  CAS  Google Scholar 

  6. Toure, M., Charles, L., Chendo, C., Viel, S., Chuzel, O., Parrain, J.-L.: Straightforward and controlled shape access to efficient macrocyclic imidazolylboronium anion receptors. Chem. Eur. J. 22(26), 8937–8942 (2016). doi:10.1002/chem.201601174

    Article  CAS  Google Scholar 

  7. Savastano, M., Bazzicalupi, C., Garcia, C., Gellini, C., Lopez de la Torre, M.D., Mariani, P., Pichierri, F., Bianchi, A., Melguizo, M.: Iodide and triiodide anion complexes involving anion-π interactions with a tetrazine-based receptor. Dalton Trans. 46(14), 4518–4529 (2017). doi:10.1039/c7dt00134g

    Article  CAS  Google Scholar 

  8. Savastano, M., Bazzicalupi, C., Giorgi, C., García-Gallarín, C., López de la Torre, M.D., Pichierri, F., Bianchi, A., Melguizo, M.: Anion complexes with tetrazine-based ligands: formation of strong anion–π interactions in solution and in the solid state. Inorg. Chem. 55(16), 8013–8024 (2016). doi:10.1021/acs.inorgchem.6b01138

    Article  CAS  Google Scholar 

  9. Ruiz-Botella, S., Vidossich, P., Ujaque, G., Peris, E.: Rim, side arms, and cavity: three sites for the recognition of anions by tetraazolium resorcinarene cavitands. Chem. Eur. J. 22(44), 15800–15806 (2016). doi:10.1002/chem.201602916

    Article  CAS  Google Scholar 

  10. Bhat, M.P., Jung, H.-Y., Losic, D., Kurkuri, M.D.: Anion sensors as logic gates: a close encounter? Chem. Eur. J. 22(18), 6148–6178 (2016). doi:10.1002/chem.201504396

    Article  Google Scholar 

  11. Clarke, H.J., Van Rossom, W., Horton, P.N., Light, M.E., Gale, P.A.: Anion transport and binding properties of N N′-(phenylmethylene)dibenzamide based receptors. Supramol. Chem. 28(1–2), 10–17 (2016). doi:10.1080/10610278.2015.1034126

    Article  CAS  Google Scholar 

  12. Kuwajima, S., Kikukawa, Y., Hayashi, Y.: Small-molecule anion recognition by a shape-responsive bowl-type dodecavanadate. Chem. Asian J. 12(15), 1909–1914 (2017). doi:10.1002/asia.201700489

    Article  CAS  Google Scholar 

  13. Vargas-Zúñiga, G.I., Sessler, J.L.: Pyrrole N–H anion complexes. Coord. Chem. Rev. 345, 281–296 (2017). doi:10.1016/j.ccr.2017.04.004

    Article  Google Scholar 

  14. Busschaert, N., Caltagirone, C., Van Rossom, W., Gale, P.A.: Applications of supramolecular anion recognition. Chem. Rev. 115(15), 8038–8155 (2015). doi:10.1021/acs.chemrev.5b00099

    Article  CAS  Google Scholar 

  15. Gale, P.A., Davis, J.T., Quesada, R.: Anion transport and supramolecular medicinal chemistry. Chem. Soc. Rev. 46(9), 2497–2519 (2017). doi:10.1039/c7cs00159b

    Article  CAS  Google Scholar 

  16. Li, H., Valkenier, H., Judd, L.W., Brotherhood, P.R., Hussain, S., Cooper, J.A., Jurček, O., Sparkes, H.A., Sheppard, D.N., Davis, A.P.: Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia. Nat. Chem. 8(1), 24–32 (2016). doi:10.1038/nchem.2384

    Article  CAS  Google Scholar 

  17. Gloe, K., Stephan, H., Grotjahn, M.: Where is the anion extraction going? Chem. Eng. Technol. 26(11), 1107–1117 (2003). doi:10.1002/ceat.200306105

    Article  CAS  Google Scholar 

  18. Gloe, K., Gloe, K., Wenzel, M., Lindoy, L.F., Li, F.: Supramolecular chemistry in solvent extraction. In: Moyer, B. A. (ed) Ion Exchange and Solvent Extraction. Ion Exchange and Solvent Extraction Series, pp. 1–48. CRC Press, Boca Raton (2013)

    Google Scholar 

  19. Ahmed, B.M., Calco, B., Mezei, G.: Tuning the structure and solubility of nanojars by peripheral ligand substitution, leading to unprecedented liquid-liquid extraction of the carbonate ion from water into aliphatic solvents. Dalton Trans. 45(20), 8327–8339 (2016). doi:10.1039/c6dt00847j

    Article  CAS  Google Scholar 

  20. Warr, R.J., Bell, K.J., Gadzhieva, A., Cabot, R., Ellis, R.J., Chartres, J., Henderson, D.K., Lykourina, E., Wilson, A.M., Love, J.B., Tasker, P.A., Schroder, M.: A comparison of the selectivity of extraction of [PtCl6]2– by mono-, bi-, and tripodal receptors that address its outer coordination sphere. Inorg. Chem. 55(12), 6247–6260 (2016). doi:10.1021/acs.inorgchem.6b00848

    Article  CAS  Google Scholar 

  21. Carreira-Barral, I., Mato-Iglesias, M., de Blas, A., Platas-Iglesias, C., Tasker, P.A., Esteban-Gomez, D.: Ditopic receptors containing urea groups for solvent extraction of Cu(II) salts. Dalton Trans. 46(10), 3192–3206 (2017). doi:10.1039/c7dt00093f

    Article  CAS  Google Scholar 

  22. Fowler, C.J., Haverlock, T.J., Moyer, B.A., Shriver, J.A., Gross, D.E., Marquez, M., Sessler, J.L., Hossain, M.A., Bowman-James, K.: Enhanced anion exchange for selective sulfate extraction: overcoming the Hofmeister bias. J. Am. Chem. Soc. 130, 14386 (2008)

    Article  CAS  Google Scholar 

  23. Moyer, B.A., Custelcean, R., Hay, B.P., Sessler, J.L., Bowman-James, K., Day, V.W., Kang, S.-O.: A case for molecular recognition in nuclear separations: sulfate separation from nuclear wastes. Inorg. Chem. 52(7), 3473–3490 (2013). doi:10.1021/ic3016832

    Article  CAS  Google Scholar 

  24. Sessler, J.L., Gale, P.A., Cho, W.-S.: Anion receptor chemistry. The Royal Society of Chemistry, London (2006)

    Google Scholar 

  25. Qin, L., Hartley, A., Turner, P., Elmes, R.B.P., Jolliffe, K.A.: Macrocyclic squaramides: anion receptors with high sulfate binding affinity and selectivity in aqueous media. Chem. Sci. 7(7), 4563–4572 (2016). doi:10.1039/c6sc01011c

    Article  CAS  Google Scholar 

  26. Emami Khansari, M., Mirchi, A., Pramanik, A., Johnson, C.R., Leszczynski, J., Hossain, M.A.: Remarkable hexafunctional anion receptor with operational urea-based inner cleft and thiourea-based outer cleft: novel design with high-efficiency for sulfate binding. Sci. Rep. 7(1), 6032 (2017). doi:10.1038/s41598-017-05831-x

    Article  Google Scholar 

  27. He, Q., Kelliher, M., Bähring, S., Lynch, V.M., Sessler, J.L.: A Bis-calix[4]pyrrole enzyme mimic that constrains two oxoanions in close proximity. J. Am. Chem. Soc. 139(21), 7140–7143 (2017). doi:10.1021/jacs.7b02329

    Article  CAS  Google Scholar 

  28. He, Q., Peters, G.M., Lynch, V.M., Sessler, J.L.: Recognition and extraction of cesium hydroxide and carbonate using a neutral multitopic ion-pair receptor. Angew. Chem. Int. Ed. (2017). doi:10.1002/anie.201705788

    Google Scholar 

  29. Seipp, C.A., Williams, N.J., Bryantsev, V.S., Moyer, B.A.: A simple guanidinium motif for the selective binding and extraction of sulfate. Sep. Sci. Technol. (2017). doi:10.1080/01496395.2017.1318922

    Google Scholar 

  30. Gale, P.A.: From anion receptors to transporters. Acc. Chem. Res. 44, 216 (2011)

    Article  CAS  Google Scholar 

  31. Lang, C., Mohite, A., Deng, X., Yang, F., Dong, Z., Xu, J., Liu, J., Keinan, E., Reany, O.: Semithiobambus[6]uril is a transmembrane anion transporter. Chem. Commun. 53(54), 7557–7560 (2017). doi:10.1039/c7cc04026a

    Article  CAS  Google Scholar 

  32. Havel, V., Babiak, M., Sindelar, V.: Modulation of bambusuril anion affinity in water. Chem. Eur. J. 23(37), 8963–8968 (2017). doi:10.1002/chem.201701316

    Article  CAS  Google Scholar 

  33. Cornes, S.P., Sambrook, M.R., Beer, P.D.: Selective perrhenate recognition in pure water by halogen bonding and hydrogen bonding alpha-cyclodextrin based receptors. Chem. Commun. 53(27), 3866–3869 (2017). doi:10.1039/c7cc01605k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Max Buchner Foundation (MBFSt 3558).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan J. Weigand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenzel, M., Weigand, J.J. Recent advances in anion recognition. J Incl Phenom Macrocycl Chem 89, 247–251 (2017). https://doi.org/10.1007/s10847-017-0756-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0756-y

Keywords

Navigation