Skip to main content
Log in

Quantitative conformational stability host-guest complex of Carvacrol and Thymol with β-cyclodextrin: a theoretical investigation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this research paper, we describe a study on the inclusion complex formation between both of the most important antioxidants Carvacrol, Thymol and beta-cyclodextrin (\(\beta-CD\)). We use docking and quantum chemical calculations to ascertain the capability of the nano hydrophobic cavity of beta-cyclodextrin (\(\beta-CD\)) to encapsulate Carvacrol and Thymol compounds (X), the formation of 1:1 a stoichiometry ratio of host-guest inclusion complex (\(X@\beta-CD\)) in the gas and solution phase using different quantum mechanical methods including semi-empirical (PM6), ab initio (HF), and density functional theory (B3LYP), all HF and DFT calculations have been performed with the 6-31G and 6-31+G(d) basis sets. Two modes of complexation were taken into consideration ‘orientation’. The results obtained with B3LYP/6-31+G(d) method clearly indicate that the complexes formed are energetically favored with or without solvent. Two groups of conformers were found.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ruberto, G., Baratta, M.T., Deans, S.G., Dorman, H.J.: Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med. 66(8), 687–693 (2000). doi:10.1055/s-2000-9773

    Article  CAS  Google Scholar 

  2. Ran, C., Hu, J., Liu, W., Liu, Z., He, S., Dan, B.C., Diem, N.N., Ooi, E.L., Zhou, Z.: Thymol and carvacrol affect hybrid tilapia through the combination of direct stimulation and an intestinal microbiota-mediated effect: insights from a germ-free zebrafish model. J. Nutr. 146(5), 1132–1140 (2016). doi:10.3945/jn.115.229377

    Article  CAS  Google Scholar 

  3. Cossu, A., Wang, M.S., Chaudhari, A., Nitin, N.: Antifungal activity against Candida albicans of starch Pickering emulsion with thymol or amphotericin B in suspension and calcium alginate films. Int. J. Pharm. 493(1–2), 233–242 (2015). doi:10.1016/j.ijpharm.2015.07.065

    Article  CAS  Google Scholar 

  4. Maisanaba, S., Prieto, A.I., Puerto, M., Gutirrez-Praena, D., Demir, E., Marcos, R., Camen, A.M.: In vitro genotoxicity testing of carvacrol and thymol using the micronucleus and mouse lymphoma assays. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 784–785, 37–44 (2015). doi:10.1016/j.mrgentox.2015.05.005

    Article  Google Scholar 

  5. Del Toro-Snchez, C.L., Ayala-Zavala, J.F., Machi, L., Santacruz, H., Villegas-Ochoa, M.A., Alvarez-Parrilla, E., Gonzlez-Aguilar, G.A.: Controlled release of antifungal volatiles of thyme essential oil from \(\beta\)-cyclodextrin capsules. J. Incl. Phenom. Macrocycl. Chem. 67(3), 431–441 (2010). doi:10.1007/s10847-009-9726-3

    Article  Google Scholar 

  6. Mulinacci, N., Melani, F., Vincieri, F.F., Mazzi, G., Romani, A.: 1H-NMR NOE and molecular modelling to characterize thymol and carvacrol \(\beta\)-cyclodextrin complexes. Int. J. Pharm. 128(1), 81–88 (1996). doi:10.1016/0378-5173(95)04224-5

    Article  CAS  Google Scholar 

  7. Azirak, S., Rencuzogullari, E.: The in vivo genotoxic effects of carvacrol and thymol in rat bone marrow cells. Environ. Toxicol. 23(6), 728–735 (2008). doi:10.1002/tox.20380

    Article  CAS  Google Scholar 

  8. Maeda, H., Iga, Y., Nakayama, H.: Characterization of inclusion complexes of betahistine with \(\beta\)-cyclodextrin and evaluation of their anti-humidity properties. J. Incl. Phenom. Macrocycl. Chem. 86(3), 337–342 (2016). doi:10.1007/s10847-016-0658-4

    Article  CAS  Google Scholar 

  9. Haloci, E., Toska, V., Shkreli, R., Goci, E., Vertuani, S., Manfredini, S.: Encapsulation of Satureja montana essential oil in \(\beta\)-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 80(1), 147–153 (2014). doi:10.1007/s10847-014-0437-z

    Article  CAS  Google Scholar 

  10. Fromming, K.-H., Szejtli, Jz: Cyclodextrins in Pharmacy. Topics in Inclusion Science, vol. 5. Kluwer Academic Publishers, Dordrecht (1994)

    Book  Google Scholar 

  11. Ikotun, B.D., Mishra, S.B., Fanourakis, G.C.: Modification of the hydration products of hydrated cement paste by fly ash, \(\beta\)-cyclodextrin and fly ash-\(\beta\)-cyclodextrin composite. J. Incl. Phenom. Macrocycl. Chem. 87(1), 219–237 (2017). doi:10.1007/s10847-017-0692-x

    Article  CAS  Google Scholar 

  12. Regdon, G., Bcskay, I., Gergely, ., Hdi, K., Kata, M.: Influence of Cyclodextrins on the in Vitro Drug Liberation of Rectal Suppositories Containing Benzodiazepine Derivates. In: Szejtli, J., Szente, L. (eds.) Proceedings of the Eighth International Symposium on Cyclodextrins: Budapest, Hungary, March 31-April 2, 1996. pp. 435-438. Springer Netherlands, Dordrecht (1996)

  13. Loftsson, T., Duchne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329(1–2), 1–11 (2007). doi:10.1016/j.ijpharm.2006.10.044

    Article  CAS  Google Scholar 

  14. Gloe, K.: Macrocyclic Chemistry : Current Trends and Future Perspectives. Springer, Dordrecht (2005)

    Book  Google Scholar 

  15. Jin, Z.-Y.: Cyclodextrin Chemistry: Preparation and Application. World Scientific, Singapore (2013)

    Book  Google Scholar 

  16. Szejtli, J.: Cycldextrins and Their Inclusion Complexes. Akademia Kiado, Budapest (1982)

    Google Scholar 

  17. Szejtli, J.: Cyclodextrins : 1st international symposium: Papers. Reidel, Dordercht (1982)

  18. Szejtli, J., Osa, T.: Comprehensive Supramolecular Chemistry. Pergamon, Oxford (1996)

    Google Scholar 

  19. Albrecht, M., Shang, Y., Hasui, K., Gossen, V., Raabe, G., Tahara, K., Tobe, Y.: Tuning the size of supramolecular M4L4 tetrahedra by ligand connectivity. Dalton Trans. 41(31), 9316–9322 (2012)

    Article  CAS  Google Scholar 

  20. Cucinotta, V., Grasso, G., Pedotti, S., Rizzarelli, E., Vecchio, G.: Three-dimensional cyclodextrin: a new class of hosts by trehalose capping of \(\beta\)-cyclodextrin. J. Incl. Phenom. Mol. Recognit. Chem. 25(1), 39–42 (1996). doi:10.1007/bf01041532

    Article  CAS  Google Scholar 

  21. Junco, S., Casimiro, T., Ribeiro, N., Nunes Da Ponte, M., Cabral Marques, H.M.: Optimisation of supercritical carbon dioxide systems for complexation of naproxen: beta-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 44(1), 69–73 (2002). doi:10.1023/a:1023028815180

    Article  CAS  Google Scholar 

  22. Pereira, R.A., da Silva Borges, W.M., Peraro, C.R., Anconi, C.P.A.: Theoretical inclusion of deprotonated 2,4-D and dicamba pesticides in \(\beta\)-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 86(3), 343–349 (2016). doi:10.1007/s10847-016-0665-5

    Article  CAS  Google Scholar 

  23. Ikeda, Y., Motoune, S., Marumoto, A., Sonoda, Y., Hirayama, F., Arima, H., Uekama, K.: Effect of 2-Hydroxypropyl-\(\beta\)-cyclodextrin on release rate of metoprolol from ternary metoprolol/2-hydroxypropyl-\(\beta\)-cyclodextrin/ethylcellulose tablets. J. Incl. Phenom. Macrocycl. Chem. 44(1), 141–144 (2002). doi:10.1023/a:1023082226992

    Article  CAS  Google Scholar 

  24. Bogdan, M., Floare, C.G., Buimaga-Iarinca, L., Morari, C., Pirnau, A.: NMR study and computational assays of meclofenamic Na salt and \(\beta\)-cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 85(1), 111–120 (2016). doi:10.1007/s10847-016-0610-7

    Article  CAS  Google Scholar 

  25. Guo, X., Wang, Z., Zuo, L., Zhou, Z., Guo, X., Sun, T.: Quantitative prediction of enantioseparation using β-cyclodextrin derivatives as chiral selectors in capillary electrophoresis. Analyst 139(24), 6511–6519 (2014). doi:10.1039/C4AN01265H

    Article  CAS  Google Scholar 

  26. Ren, B., Jiang, B., Hu, R., Zhang, M., Chen, H., Ma, J., Sun, Y., Jia, L., Zheng, J.: HP-β-cyclodextrin as an inhibitor of amyloid-β aggregation and toxicity. Phys. Chem. Chem. Phys. 18(30), 20476–20485 (2016). doi:10.1039/C6CP03582E

    Article  CAS  Google Scholar 

  27. Simoes, S.M.N., Rey-Rico, A., Concheiro, A., Alvarez-Lorenzo, C.: Supramolecular cyclodextrin-based drug nanocarriers. Chem. Commun. 51(29), 6275–6289 (2015). doi:10.1039/C4CC10388B

    Article  CAS  Google Scholar 

  28. Frijlink, H.W., Visser, J., Hefting, N.R., Oosting, R., Meijer, D.K.F., Lerk, C.F.: The pharmacokinetics of \(\beta\)-cyclodextrin and hydroxypropyl-\(\beta\)-cyclodextrin in the rat. Pharm. Res. 7(12), 1248–1252 (1990). doi:10.1023/a:1015929720063

    Article  CAS  Google Scholar 

  29. Abdelmalek, L., Fatiha, M., Leila, N., Mouna, C., Nora, M., Djameleddine, K.: Computational study of inclusion complex formation between carvacrol and \(\beta\)-cyclodextrin in vacuum and in water: charge transfer, electronic transitions and NBO analysis. J. Mol. Liq. 224, 62–71 (2016). doi:10.1016/j.molliq.2016.09.053

    Article  CAS  Google Scholar 

  30. Mathapa, B.G., Paunov, V.N.: Cyclodextrin stabilised emulsions and cyclodextrinosomes. Phys. Chem. Chem. Phys. 15(41), 17903–17914 (2013). doi:10.1039/C3CP52116H

    Article  CAS  Google Scholar 

  31. Takahashi, K., Ohtsuka, Y., Nakada, S., Hattori, K.: Syntheses of 6N(N-formyl-D-phenylalanyl)-deoxyamino-\(\beta\)-cyclodextrin and 6N(N-formyl-L-phenylalanyl)deoxyamino-\(\beta\)-cyclodextrin and their inclusion behavior. J. Incl. Phenom. Mol. Recognit. Chem. 10(1), 63–68 (1991). doi:10.1007/bf01041640

    Article  CAS  Google Scholar 

  32. Tavornvipas, S., Arima, H., Hirayama, F., Uekama, K., Ishiguro, T., Oka, M., Hamayasu, K., Hashimoto, H.: Some pharmaceutical properties of a new branched cyclodextrin, 6-O-(4-O- -D-glucuronyl)-D-glucosyl \(\beta\)-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 44(1), 391–394 (2002). doi:10.1023/a:1023067232328

    Article  CAS  Google Scholar 

  33. Donze, C., Coleman, A.W.: \(\beta\)-CD inclusion complexes: relative selectivity of terpene and aromatic guest molecules studied by competitive inclusion experiments. J. Incl. Phenom. Mol. Recognit. Chem. 16(1), 1–15 (1993). doi:10.1007/bf00708758

    Article  CAS  Google Scholar 

  34. Fergoug, T., Junquera, E., Aicart, E.: Effect of temperature on the encapsulation of the drug tetracaine hydrochloride by \(\beta\)-cyclodextrin and hydoxypropyl-\(\beta\)-cyclodextrin in aqueous medium. J. Incl. Phenom. Macrocycl. Chem. 47(1), 65–70 (2003). doi:10.1023/B:JIPH.0000003877.21966.6d

    Article  CAS  Google Scholar 

  35. Menuel, S., Bertaut, E., Monflier, E., Hapiot, F.: Cyclodextrin-based PNN supramolecular assemblies: a new class of pincer-type ligands for aqueous organometallic catalysis. Dalton Trans. 44(30), 13504–13512 (2015). doi:10.1039/C5DT01825K

    Article  CAS  Google Scholar 

  36. Nageswara Rao, R., Santhakumar, K.: Cyclodextrin assisted enantiomeric recognition of emtricitabine by 19F NMR spectroscopy. N J Chem. 40(10), 8408–8417 (2016). doi:10.1039/C6NJ00356G

    Article  CAS  Google Scholar 

  37. Preiss, A., Mehnert, W., Frmming, K.-H.: The inclusion compound of emulsified cetostearyl alcohol with \(\beta\)-cyclodextrin and a competitive reaction with a hydrocortisone/\(\beta\)-cyclodextrin inclusion compound in an oil-in-water cream. J. Incl. Phenom. Mol. Recognit. Chem. 18(4), 331–339 (1994). doi:10.1007/bf00707382

    Article  CAS  Google Scholar 

  38. Bethanis, K., Tzamalis, P., Tsorteki, F., Kokkinou, A., Christoforides, E., Mentzafos, D.: Structural study of the inclusion compounds of thymol, carvacrol and eugenol in \(\beta\)-cyclodextrin by X-ray crystallography. J. Incl. Phenom. Macrocycl. Chem. 77(1), 163–173 (2013). doi:10.1007/s10847-012-0230-9

    Article  CAS  Google Scholar 

  39. Sakina, H., Abdelaziz, B., Leila, N., Imene, D., Fatiha, M., Eddine, K.D.: Molecular docking study on \(\beta\)-cyclodextrin Interactions of metobromuron and [3-(p-bromophenyl)-1-methoxy-1-methylurea]. J. Incl. Phenom. Macrocycl. Chem. 74(1), 191–200 (2012). doi:10.1007/s10847-011-0100-x

    Article  CAS  Google Scholar 

  40. Nascimento, C.S., Anconi, C.P.A., Lopes, J.F., Santos, H.F.D., De Almeida, W.B.: An efficient methodology to study cyclodextrin clusters: application to -CD hydrated monomer, dimer, trimer and tetramer. J. Incl. Phenom. Macrocycl. Chem. 59(3), 265–277 (2007). doi:10.1007/s10847-007-9320-5

    Article  CAS  Google Scholar 

  41. P. D. B. RCSB, DB03995. https://www3.rcsb.org/ligand/BCD

  42. Evans, D. A., Rubenstein, S.: Chemical structure drawing software package (2012)

  43. Stewart, J.J.: Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13(12), 1173–1213 (2007). doi:10.1007/s00894-007-0233-4

    Article  CAS  Google Scholar 

  44. Roothaan, C.C.J.: New developments in molecular orbital theory. Rev. Mod. Phys. 23(2), 69–89 (1951)

    Article  CAS  Google Scholar 

  45. Binkley, J.S., Pople, J.A., Hehre, W.J.: Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 102(3), 939–947 (1980). doi:10.1021/ja00523a008

    Article  CAS  Google Scholar 

  46. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871 (1964)

    Article  Google Scholar 

  47. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098–3100 (1988)

    Article  CAS  Google Scholar 

  48. Becke, A.D.: A new mixing of Hartree-Fock and local density functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993). doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  49. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993). doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  50. Marenich, A.V., Cramer, C.J., Truhlar, D.G.: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113(18), 6378–6396 (2009). doi:10.1021/jp810292n

    Article  CAS  Google Scholar 

  51. Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19(4), 553–566 (1970). doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  52. Simon, S., Duran, M., Dannenberg, J.J.: How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? J. Chem. Phys. 105(24), 11024–11031 (1996). doi:10.1063/1.472902

    Article  CAS  Google Scholar 

  53. Kahwajy, N., Nematollahi, A., Kim, R.R., Church, W.B., Wheate, N.J.: Comparative macrocycle binding of the anticancer drug phenanthriplatin by cucurbit[n]urils, beta-cyclodextrin and para-sulfonatocalix[4]arene: a 1H NMR and molecular modelling study. J. Incl. Phenom. Macrocycl. Chem. 87(3), 251–258 (2017)

    Article  CAS  Google Scholar 

  54. Bensouilah, N., Boutemeur-Kheddis, B., Bensouilah, H., Meddour, I., Abdaoui, M.: Host-guest complex of nabumetone: beta-cyclodextrin: quantum chemical study and QTAIM analysis. J. Incl. Phenom. Macrocycl. Chem. 87(1), 191–206 (2017). doi:10.1007/s10847-016-0690-4

    Article  CAS  Google Scholar 

  55. Weinhold, F., Landis, C.R.: Discovering chemistry with natural bond orbitals. Wiley, Chichester (2012)

    Book  Google Scholar 

  56. Weinhold, F., Landis, C.R.: Natural bond orbitals and extensions of localized bonding concepts. Chem. Educ. Res. Pract. 2(2), 91–104 (2001). doi:10.1039/B1RP90011K

    Article  CAS  Google Scholar 

  57. Reed, A.E., Curtiss, L.A., Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88(6), 899–926 (1988). doi:10.1021/cr00088a005

    Article  CAS  Google Scholar 

  58. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09. Gaussian, Inc., Wallingford (2009)

    Google Scholar 

  59. Fatiha, M., Leila, L., Eddine, K.D., Leila, N.: Computational investigation of enol/keto chloramphenicol with \(\beta\)-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 77(1), 421–427 (2013). doi:10.1007/s10847-012-0262-1

    Article  CAS  Google Scholar 

  60. Koopmans, T.: ber die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1(1–6), 104–113 (1934). doi:10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks ministry of higher education and scientific research of algeria (MESRS) and the HPC ressources of UCI-UABT of the University Abou Bekr Belkaïd of Tlemcen for financial support in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkrim Guendouzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guendouzi, A., Mekelleche, S.M., Brahim, H. et al. Quantitative conformational stability host-guest complex of Carvacrol and Thymol with β-cyclodextrin: a theoretical investigation. J Incl Phenom Macrocycl Chem 89, 143–155 (2017). https://doi.org/10.1007/s10847-017-0740-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0740-6

Keywords

Navigation