Skip to main content

Advertisement

Log in

Synthesis and evaluation of cyclodextrin-based polymers for patulin extraction from aqueous solutions

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Patulin is a mycotoxin produced by fungi that contaminate fruits, juices, and other agricultural commodities. Sorption properties of polyurethane-beta-cyclodextrin polymers were evaluated for the ability to remove patulin from solutions, including apple juice. Freundlich isotherm analysis determined the polymers possess a degree of heterogeneity. Evaluation of the polymers by solid phase extraction analysis indicated patulin sorption is enhanced in aqueous environments. Polymers crosslinked with tolylene 2,4-diisocyanate were suitable for extraction of patulin from apple juice. Quantum chemical studies of the interactions of patulin and beta-cylcodextrin using the PM3 semi-empirical method infer patulin is capable of binding to the polymer in multiple modes. Certain of these bound complexes possess intermolecular hydrogen bond interactions between the primary hydroxyls of beta-cyclodextrin and patulin. These nanoporous cyclodextrin polymers exhibit favorable properties to assist the detection of patulin in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Council for Agricultural Science, Technology (CAST): Mycotoxins: Risks in Plant, Animal and Human Systems. Task Force Report, No 139, CAST, Ames, Iowa (2003)

  2. Drusch, S., Ragab, W.: Mycotoxins in fruits, fruit juices, and dried fruits. J. Food Prot. 66, 1514–1527 (2003)

    CAS  Google Scholar 

  3. Schumacher, D.M., Müller, C., Metzler, M., Lehmann, L.: DNA–DNA cross-links contribute to the mutagenic potential of the mycotoxin patulin. Toxicol. Lett. 166, 268–275 (2006)

    Article  CAS  Google Scholar 

  4. Jackson, L., Dombrink-Kurtzman, M.A.: Patulin. In: Sapers, G.M., Gorney, J.R., Yousef, A.E. (eds.) Microbiology of Fruits and Vegetables, pp. 281–311. CRC Press, Boca Raton (2006)

    Google Scholar 

  5. Krska, R., Schubert-Ullrich, P., Molinelli, A., Sulyok, M., MacDonald, S., Crews, C.: Mycotoxin analysis: an update. Food Addit. Contam. 25, 152–163 (2008)

    Article  CAS  Google Scholar 

  6. Cigić, I.K., Prosen, H.: An overview of conventional and emerging analytical methods for the determination of mycotoxins. Int. J. Mol. Sci. 10, 62–115 (2009)

    Article  Google Scholar 

  7. Katerere, D.R., Stockenström, S., Balducci, G., Shephard, G.S.: Determination of patulin in apple juice: comparative evaluation of four analytical methods. J. AOAC Int. 90, 162–166 (2007)

    CAS  Google Scholar 

  8. Fliege, R., Metzler, M.: Electrophilic properties of patulin. N-acetylcysteine and glutathione adducts. Chem. Res. Toxicol. 13, 373–381 (2000)

    Article  CAS  Google Scholar 

  9. Appell, M., Dombrink-Kurtzmann, M.A., Kendra, D.F.: Comparative study of patulin, ascladiol, and neopatulin by density functional theory. J. Mol. Struct. (Theochem) 894, 23–31 (2009)

    Article  CAS  Google Scholar 

  10. Hubbard, C.R., Mighell, A.D., Ware, G.M.: 4-Hydroxy-4H-furo[3, 2-c]pyran- 2(6H)-one (DL-patulin). Acta Cryst. B33, 928–931 (1977)

    CAS  Google Scholar 

  11. García-Zubiri, I.X., González-Gaitano, G., Isasi, I.R.: Sorption models in cyclodextrin polymers: Langmuir, Freundlich, and a dual-mode approach. J. Colloid Interface Sci. 337, 11–18 (2009)

    Article  Google Scholar 

  12. Mongkolkul, P., Rodart, P., Pipatthitikorn, T., Meksut, L., Sa-nguandeekul, R.: Debittering of tangerine citrus reticulata blanco juice by β-cyclodextrin polymer. J. Incl. Phenom. Macrocycl. Chem. 56, 167–170 (2006)

    Article  CAS  Google Scholar 

  13. Nkambule, T.I., Krause, R.W.M., Mamba, B.B., Haarhoff, J.: Characterisation of natural organic matter (NOM) and its removal using cyclodextrin polyurethanes. Water SA 35, 200–203 (2009)

    CAS  Google Scholar 

  14. Berto, S., Bruzzoniti, M.C., Cavalli, R., Perrachon, D., Prenesti, E., Sarzanini, C., Trotta, F., Tumiatti, W.: Synthesis of new ionic β-cyclodextrin polymers and characterization of their heavy metals retention. J. Incl. Phenom. Macrocycl. Chem. 57, 631–636 (2007)

    Article  CAS  Google Scholar 

  15. Ozmen, E.Y., Sezgin, M., Yilmaz, A., Yilmaz, M.: Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresour. Technol. 99, 526–531 (2008)

    Article  CAS  Google Scholar 

  16. Mhlanga, S.D., Mamba, B.B., Krause, R.W., Malefetse, T.J.: Removal of organic contaminants from water using nanosponge cyclodextrin polyurethanes. J. Chem. Technol. Biotechnol. 82, 382–388 (2007)

    Article  CAS  Google Scholar 

  17. Li, D.Q., Ma, M.: Nanoporous polymers: new nanosponge absorbent media. Filtr. Sep. 36, 26–28 (1999)

    CAS  Google Scholar 

  18. Cozzini, P., Ingletto, G., Singh, R., Dall’Asta, C.: Mycotoxin detection plays “cops and robbers”: cyclodextrin chemosensors as specialized police? Int. J. Mol. Sci. 9, 2474–2494 (2008)

    Article  CAS  Google Scholar 

  19. Maragos, C.M., Appell, M., Lippolis, V., Visconti, A., Catucci, L., Pascale, M.: Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins. Food Addit. Contam. 25, 164–171 (2008)

    Article  CAS  Google Scholar 

  20. Abbas, H.K., Shier, W.T., Horn, B.W., Weaver, M.A.: Cultural methods for aflatoxin detection. J. Toxicol. Toxin Rev. 23, 295–315 (2004)

    CAS  Google Scholar 

  21. PQS version 3.2, Parallel Quantum Solutions, 2013 Green Acres Road, Fayetteville, AR 72703 USA

  22. Stewart, J.J.P.: Optimization of parameters for semiempirical methods II. Applications. J. Comput. Chem. 10, 221–264 (1989)

    Article  CAS  Google Scholar 

  23. Cornell, W.D., Cieplak P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

  24. Hyperchem, Release 7.52, Hypercube Inc., 1115 NW 4th Street, Gainesville, FL 32601 USA

  25. Adak, A., Bandyopadhyay, M., Pal, A.: Removal of anionic surfactant from wastewater by alumina: a case study. Colloids Surf. A 254, 165–171 (2005)

    Article  CAS  Google Scholar 

  26. Bui, T.X., Choi, H.: Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. J. Hazard. Mater. 168, 602–608 (2009)

    Article  CAS  Google Scholar 

  27. Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N., Ismadji, S.: Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res. 43, 2419–2430 (2009)

    Article  CAS  Google Scholar 

  28. Yamasaki, H., Makihata, Y., Fukunaga, K.: Preparation of crosslinked β- cyclodextrin polymer beads and their application as a sorbent for removal of phenol from wastewater. J. Chem. Technol. Biotechnol. 83, 991–997 (2008)

    Article  CAS  Google Scholar 

  29. Seidel, R.W., Koleva, B.B.: β-Cyclodextrin 10.41-hydrate. Acta Crystallogr., Sect. E: Struct. Rep. Online E65, 3162–3163 (2009)

    Article  Google Scholar 

  30. Umpleby II, R.J., Baxter, S.C., Bode, M., Berch Jr, J.K., Shah, R.N., Shimizu, K.D.: Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers. Anal. Chim. Acta 435, 35–42 (2001)

  31. Li, J., Wu, R., Hyu, Q., Wang, J.: Solid-phase extraction and HPLC determination of patulin in apple juice concentrate. Food Control 18, 530–534 (2007)

    Article  CAS  Google Scholar 

  32. Trucksess, M.W., Tang, Y.: Solid-phase extraction method for patulin in apple juice and unfiltered apple juice. J. AOAC Int. 82, 1109–1113 (1999)

    CAS  Google Scholar 

  33. Dolenc, J., Koller, J.: An improved semiemperical MO PM3 method for hydrogen bond systems. Acta Chim. Slov. 53, 229–237 (2006)

    CAS  Google Scholar 

  34. Durán-Merás, I., Muñoz de la Peña, A., Salinas López, F., Rodríguez Cáceres, M.I.: Complexation study and spectrofluorimetric determination of pipemidic acid with γ-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 51, 137–142 (2005)

    Article  Google Scholar 

  35. Castro, R., Berardi, M.J., Cordova, E., Ochoa de Olza, M., Kaifer, A.E., Evanseck, J.D.: Unexpected roles of guest polarizability and maximum hardness, and of host solvation in supramolecular inclusion complexes: a dual theoretical and experimental study. J. Am. Chem. Soc. 118, 10257–10268 (1996)

    Article  CAS  Google Scholar 

  36. Song, L.X., Wang, H.M., Guo, X.Q., Bai, L.: A comparative study on the binding behaviors of β-cyclodextrin and its two derivatives to four fanlike organic guests. J. Org. Chem. 73, 8305–8316 (2008)

    Article  CAS  Google Scholar 

  37. Leclercq, L., Schmitzer, A.R.: Multiple equilibria in the complexation of dibenzylimidazolium bromide salts by cyclodextrins: toward controlled self assembly. J. Phys. Chem B 112, 11064–11070 (2008)

    Article  CAS  Google Scholar 

  38. Yiannikouris, A., André, G., Poughon, L., François, J., Dussap, C.-G., Jeminet, G., Bertin, G., Jouany, J.-P.: Chemical and conformational study of the interactions involved in mycotoxin complexation with β-D-glucans. Biomacromolecules 7, 1147–1155 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Lijuan C. Wang for excellent technical assistance. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Appell.

Additional information

United States Department of Agriculture—Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appell, M., Jackson, M.A. Synthesis and evaluation of cyclodextrin-based polymers for patulin extraction from aqueous solutions. J Incl Phenom Macrocycl Chem 68, 117–122 (2010). https://doi.org/10.1007/s10847-010-9744-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9744-1

Keywords

Navigation