Skip to main content
Log in

Functionalization of polymeric membranes by impregnation and in situ cross-linking of a PDMS/β-cyclodextrin network

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this paper a new method for the functionalization of porous membranes with β-CD is reported. Porous polypropylene (PP) hollow fibres have been impregnated with a mixture composed by a partially cross-linked polydimethylsiloxane (PDMS) and β-cyclodextrin (β-CD). The prepolymerization of the PDMS components was necessary to avoid their inclusion in the β-CD cavity. The firm heterogenization of the β-CD was obtained by in situ cross-linking of the PDMS/β-CD network in the porous membranes.

The presence of the PDMS/β-CD network in the membranes was confirmed by FT-IR-ATR (on the outer and inner surfaces) and EDX analyses (on the cross-section).The effect of the impregnation times on membrane morphology, loading and porosity has been investigated.

The binding capacity of the heterogenized β-CDs has been tested using the phenolphthalein as guest molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  2. Szejtli, J.: Cyclodextrin Technology, Kluwer, Dordrecht (1988)

    Google Scholar 

  3. Takahashi, K.: Organic reactions mediated by cyclodextrins. Chem. Rev. 98, 2013–2034 (1998)

    Article  CAS  Google Scholar 

  4. Harata, K.: Structural aspects of stereodifferentiation in the solid state. Chem. Rev. 98, 1803–1828 (1998)

    Article  CAS  Google Scholar 

  5. Van Etter, R.L., Sebastian, J.F., Clowes, G.A., Bender, M.L.: Acceleration of phenyl ester cleavage by cycloamyloses. A model for enzymic specificity. J. Am. Chem. Soc. 89, 3242–3253 (1967)

    Article  Google Scholar 

  6. Ruderisch, A., Pfeiffer, J., Schurig, V.: Mixed chiral stationary phase containing modified resorcinarene and β-cyclodextrin selectors bonded to a polysiloxane for enantioselective gas chromatography. J. Chromatogr. A 994, 127–135 (2003)

    Article  Google Scholar 

  7. Soukup, R.J., Rozhkov, R.V., Larock, R.C., Armstrong, D.W.: The use of cyclodextrin-based LC stationary phases for the separation of chiral dihydrobenzofuran derivatives. Chromatographia 61, 219–224 (2005)

    Article  CAS  Google Scholar 

  8. Lubda, D., Cabrera, K., Nakanishi, K., Lindner, W.: Monolithic silica columns with chemically bonded beta-cyclodextrin as a stationary phase for enantiomer separations of chiral pharmaceuticals. Anal. Bioanal. Chem. 377, 892–901 (2003)

    Article  CAS  Google Scholar 

  9. Kwaterczak, A., Bielejewska, A.: Comparison of retention of native cyclodextrins and its permethylated derivatives on porous graphite carbon and silica C18 stationary phases. Anal. Chim. Acta. 537, 41–46 (2005)

    Article  CAS  Google Scholar 

  10. Schneiderman, E., Stalcup, A.M.: Cyclodextrins: a versatile tool in separation science. J. Chromatogr. B 745, 83–102 (2000)

    Google Scholar 

  11. Hu, Y., Yang, Y., Huang, J., Li, G.: Preparation and application of poly(dimethylsiloxane)/β-cyclodextrin solid-phase microextraction membrane. Anal. Chim. Acta. 543, 17–24 (2005)

    Article  CAS  Google Scholar 

  12. Hiroyuki, A., Takayuki, H., Makoto, K.: Efficient separation of hydrophobic molecules by molecularly imprinted cyclodextrin polymers. J. Inclusion Phenom. Macrocyclic Chem. 50, 51–55 (2004)

    Google Scholar 

  13. Egawa, Y., Shimura, Y., Nowatari, Y., Aiba, D., Juni, K.: Preparation of molecularly imprinted cyclodextrin microspheres. Int. J. Pharm. 293, 165–170 (2005)

    Article  CAS  Google Scholar 

  14. Drioli, E., Fontananova, E.: Membrane technology and sustainable growth. Chem. Eng. Res. Des. 82(A12), 1557–1562 (2004)

    Article  CAS  Google Scholar 

  15. Fontananova, E., Donato, L., Drioli, E., Lopez, L., Favia, P., d’Agostino, R.: Heterogenization of polyoxometalates on the surface of plasma modified polymeric membranes. Chem. Mater. 18, 1561–1568 (2006)

    Article  CAS  Google Scholar 

  16. Bonchio, M., Carraro, M., Scorrano, G., Fontananova, E., Drioli, E.: Heterogeneous photooxidation of alchols in water by photocatalytic membranes incorporating decatungstate. Adv. Synth. Catal. 345, 1119–1126 (2003)

    Article  CAS  Google Scholar 

  17. Fontananova, E., Basile, A., Cassano, A., Drioli, E.: Preparation of polymeric membranes entrapping β-cyclodextrin and their molecular recognition of naringin. J. Inclusion Phenom. Macrocyclic Chem. 47, 33–37 (2003)

    Article  CAS  Google Scholar 

  18. Vankelecom, I.F.J.: Polymeric membranes in catalytic reactors. Chem. Rev. 102, 3779–3810 (2002)

    Article  CAS  Google Scholar 

  19. Khan Malek, C., Thuillier, G., Blind, P.: Hybrid replication development for construction of polymeric devices. Microsyst. Technol. 10, 711–715 (2004)

    Article  Google Scholar 

  20. Vankelecom, I.F.J., Jacobs, P.A.: Dense organic catalytic membranes for fine chemical synthesis. Catal. Today 56, 147–157 (2000)

    Article  CAS  Google Scholar 

  21. Drioli, E., Curcio E., Di Profio, G.: State of the art and recent progresses in membrane contactors. Chem. Eng. Res. Des. 83(A3), 223–233 (2005)

    Article  CAS  Google Scholar 

  22. Strathmann, H., Giorno, L., Drioli, E.: An introduction to membrane science and technology, Publisher, CNR Roma, ISBN 88-8080-063-9 (2006)

  23. Lewis, H.G.P., Casserly, T.B., Gleason, K.K.: Hot-filament chemical vapor deposition of organosilicon thin films from hexamethylcyclotrisiloxane and octamethylcyclotetrasiloxane. J. Electrochem. Soc. 148(12), F212–F220 (2001)

    Article  CAS  Google Scholar 

  24. Taguchi, K.: Transient binding mode of phenolphthalein-β-cyclodextrin complex: An example of induced geometrical distortion. J. Am. Chem. Soc. 108, 2705–2709 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the “Ministero dell’Istruzione dell’Università e della Ricerca” (MIUR) (Center of Excellence CEMIF.CAL-CLAB01TYEF and FIRB CAMERE-RBNE03JCR5) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fontananova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontananova, E., Di Profio, G., Curcio, E. et al. Functionalization of polymeric membranes by impregnation and in situ cross-linking of a PDMS/β-cyclodextrin network. J Incl Phenom Macrocycl Chem 57, 537–543 (2007). https://doi.org/10.1007/s10847-006-9246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-006-9246-3

Keywords

Navigation