Skip to main content
Log in

High Precision Stabilization of Pan-Tilt Systems Using Reliable Angular Acceleration Feedback from a Master-Slave Kalman Filter

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Pan-tilt robotic platforms are widely used to point sensor arrays (e.g. cameras, radars and antennas) in certain directions toward the target. Such platforms may suffer from external disturbances due to terrain changes, high-frequency vibrations and sudden shocks, wind and other environmental factors. These disturbances and hence small angular displacements may cause large position errors if the target is too far away. Therefore, high precision stabilization is required for these platforms to converge to the desired orientation and maintain it by rejecting unknown disturbances. In motion control, robust stabilization problem is usually tackled by employing angular acceleration feedback. However, obtaining reliable acceleration information is a challenging task. In this paper, we propose a novel master-slave type Kalman filter algorithm which consists of an extended Kalman filter (EKF) and an inverse Φ-algorithm in a master-slave configuration to estimate reliable angular acceleration signals by fusing 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer data. Performance of the proposed sensor fusion algorithm is evaluated on a high fidelity simulation model by using the estimated accelerations as feedback signals in the stabilization control of a 2-DOF pan-tilt system subject to external disturbances. As the acceleration feedback is incorporated into the control loop, higher stabilization is achieved. The performance of the proposed fusion algorithm is compared to Newton predictor enhanced Kalman filter (NPEKF) and the error state Kalman filter (ErKF). The proposed master-slave Kalman filter outperforms the Newton predictor enhanced Kalman filter whereas the results obtained by the proposed algorithm and the error state Kalman filter are comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sukkarieh, S., Nebot, E.M., Durrant-Whyte, H.F.: A high integrity IMU/GPS navigation loop for autonomous land vehicle applications. IEEE Trans. Robot. Autom. 15(3), 572–578 (1999)

    Article  Google Scholar 

  2. Wendel, J., Meister, O., Schlaile, C., Trommer, G.F.: An integrated GPS/MEMS IMU navigation system for an autonomous helicopter. Aerosp Sci Technol. 10(6), 527–533 (2006)

    Article  Google Scholar 

  3. Jeong, S.H., Jung, S., Tomizuka, M.: Attitude control of a quad-rotor system using an acceleration-based disturbance observer: an empirical approach. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 916–921 (2012)

  4. Kalman, R.E.: A new approach to linear filtering and prediction problems. J Basic Eng-T ASME. 82(1), 35–45 (1960)

    Article  Google Scholar 

  5. Kim, A., Golnaraghi, M.F.: A quaternion-based orientation estimation algorithm using an inertial measurement unit. IEEE Position Location and Navigation Symposium. 268–272 (2004)

  6. Sabatini, A.M.: Kalman filter based orientation determination using inertial/magnetic sensors: Observability analysis and performance evaluation. Sensors 11(10), 9182–9206 (2011)

    Article  Google Scholar 

  7. Mathieu, P., Denis, G.: Comparison between the unscented Kalman Filter and the extended Kalman filter for the position estimation module of an integrated navigation information system. IEEE Intelligent Vehicles Symposium. 831–835 (2004)

  8. Li, W., Wang, J.: Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference systems. J. Navig. 66(1), 99–113 (2013)

    Article  Google Scholar 

  9. Roumeliotis, S.I., Sukhatme, G.S., Bekey, G.A.: Circumventing dynamic modeling: evaluation of the error-state Kalman filter applied to mobile robot localization. In: Proceedings of the 1999 IEEE International Conference on Robot Localization, pp 1656–1663 (1999)

  10. Panich, S.: Indirect Kalman filter in mobile robot application. J. Math. Stat. 6(3), 381–384 (2010)

    Article  Google Scholar 

  11. Mahony, R., Hamel, T., Pflimlin, J.M.: Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control. 53(5), 1203–1218 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bachmann, E.R., McGhee, R.B., Yun, X., Zyda, M.J.: Inertial and magnetic posture tracking for inserting humans into networked virtual environments. Proc ACM Symp Virtual Real Softw Technol. 9–16 (2001)

  13. Madgwick, S.O., Harrison, A.J., Vaidyanathan, R.: Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE Int Conf Rehabil Robot. 1–7 (2011)

  14. Gomes, M.S., Ferreira, A.M.: Gun-turret modelling and control. ABCM Symposium Series in Mechatronics. 2, 60–67 (2005)

    Google Scholar 

  15. Kumar, P., Dick, A., Sheng, T.S.: Real time target tracking with pan tilt zoom camera. Digital Image Computing: Techniques and Applications. 492–497 (2009)

  16. Davis, J., Chen, X.: Calibrating pan-tilt cameras in wide-area surveillance networks. IEEE International Conference on Computer Vision. 144–149 (2003)

  17. Lee, C.H., Kim, S.H., Kang, S.C., Kim, M.S., Kwak, Y.K.: Double-track mobile robot for hazardous environment applications. Adv. Robot. 17(5), 447–459 (2003)

    Article  Google Scholar 

  18. Schmidt, P.B., Lorenz, R.D.: Design principles and implementation of acceleration feedback to improve performance of dc drives. IEEE Trans. Ind. Appl. 28(3), 594–599 (1992)

    Article  Google Scholar 

  19. Deur, J., Peri, N.: A comparative study of servosystems with acceleration feedback. IEEE Industry Applications Conference. 3, 1533–1540 (2000)

    Google Scholar 

  20. Kobayashi, H., Katsura, S., Ohnishi, K.: An analysis of parameter variations of disturbance observer for haptic motion control. IECON. 1907–1912 (2005)

  21. Rubaai, A., Ofoli, A.R., Cobbinah, D.: Dsp-based real-time implementation of a hybrid H∞ adaptive fuzzy tracking controller for servo-motor drives. IEEE Trans. Ind. Appl. 43(2), 476–484 (2007)

    Article  Google Scholar 

  22. Rezac, M., Hurac, Z.: Vibration rejection for inertially stabilized double gimbal platform using acceleration feedforward. IEEE International Conference on Control Applications. 363–368 (2011)

  23. Craig, J.J., Hsu, P., Sastry, S.S.: Adaptive control of mechanical manipulators. Int. J. Robot. Res. 6(2), 16–28 (1987)

    Article  Google Scholar 

  24. Xu, W., Han, J., Tso, S.: Experimental study of contact transition control incorporating joint acceleration feedback. IEEE/ASME Trans. Mechatron. 5(3), 292–301 (2000)

    Article  Google Scholar 

  25. Han, J., He, Y., Xu, W.: Angular acceleration estimation and feedback control: an experimental investigation. Mechatronics 17(9), 524–532 (2007)

    Article  Google Scholar 

  26. Chen, J.H., Lee, S.C., DeBra, D.B.: Gyroscope free strapdown inertial measurement unit by six linear accelerometers. J. Guid. Control. Dyn. 17(2), 286–290 (1994)

    Article  Google Scholar 

  27. Edwan, E., Knedlik, S., Loffeld, O.: Constrained angular motion estimation in a gyro-free IMU. IEEE Trans. Aerosp. Electron. Syst. 47(1), 596–610 (2011)

    Article  Google Scholar 

  28. Edwan, E., Knedlik, S., Loffeld, O.: Angular motion estimation using dynamic models in a gyro-free inertial measurement unit. Sensors 12, 5310–5327 (2012)

    Article  Google Scholar 

  29. Petkov, P., Slavov, T.: Stochastic modeling of MEMS inertial sensors. Cybern. Inf. Technol. 10 (2), 31–40 (2010)

    Google Scholar 

  30. Crassidis, J.L., Markley, F.L., Cheng, Y.: Survey of nonlinear attitude estimation methods. J. Guid. Control. Dyn. 30(1), 12–28 (2007)

    Article  Google Scholar 

  31. Lefferts, E.J., Markley, F.L., Shuster, M.D.: Kalman filtering for spacecraft attitude estimation. J. Guid. Control. Dyn. 5(5), 417–429 (1982)

    Article  Google Scholar 

  32. Diebel, J.: Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 58 (15-16), 1–35 (2006)

    Google Scholar 

  33. Shalom, Y.B., Li, X.R., Kirubarajan, T.: Estimation with applications to tracking and navigation, John Wiley and Sons (2001)

  34. Collinson, R.P.G.: Introduction to avionics systems Springer (2003)

  35. Wang, K., Yong Li, C.R.: Practical approaches to Kalman filtering with time-correlated measurement errors. Trans. Aerosp. Electron. Syst. 48(2), 1669–1681 (2012)

    Article  Google Scholar 

  36. Bryson, A.E., Henrikson, L.J.: Estimation using sampled data containing sequentially correlated noise. J. Spacecr. Rocket. 5(6), 662–665 (1968)

    Article  Google Scholar 

  37. Petovello, M.G., O’Keefe, K., Lachapelle, G.: Consideriation of time-correlated errors in a Kalman filter applicable to GNSS. J. Geod. 83(1), 51–56 (2009)

    Article  Google Scholar 

  38. Petovello, M.G., O’Keefe, K., Lachapelle, G., Cannon, M.E.: Erratum to: Consideriation of time-correlated errors in a Kalman filter applicable to GNSS. J. Geod. 85, 367–368 (2011)

    Article  Google Scholar 

  39. Tao, G., Ma, X.: Backlash compensation for multivariable nonlinear systems with actuator dynamics, IEEE Decis Contr. 3382–3387 (1999)

  40. Hori, Y.: Disturbance suppression on an acceleration control type DC servo system. IEEE Power Electron. 222–229 (1988)

  41. Tian, F., Craig, K., Nagurka, M.: Disturbance attenuation in a magnetic levitation system with acceleration feedback. IEEE International Conference on Industrial Technology. 59–64 (2011)

  42. Craig, K.: Acceleration feedback

  43. Setoodeh, P., Khayatian, A., Farjah, E.: Attitude estimation by separate-bias Kalman filter-based data fusion. JNAV 57, 261–273 (2004)

    Google Scholar 

  44. Madyastha, V.K., Ravindra, V.C., Mallikarjunan, S., Goyal, A.: Extended Kalman Filter vs. Error State Kalman Filter for Aircraft Attitude Estimation. Guidance, Navigation and Control Conference (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Unel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evren, S., Yavuz, F. & Unel, M. High Precision Stabilization of Pan-Tilt Systems Using Reliable Angular Acceleration Feedback from a Master-Slave Kalman Filter. J Intell Robot Syst 88, 97–127 (2017). https://doi.org/10.1007/s10846-017-0522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0522-9

Keywords

Navigation