Skip to main content
Log in

Differential Evolution Markov Chain Filter for Global Localization

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A key challenge for an autonomous mobile robot is to estimate its location according to the available information. A particular aspect of this task is the global localization problem. In our previous work, we developed an algorithm based on the Differential Evolution method that solves this problem in 2D and 3D environments. The robot’s pose is represented by a set of possible location estimates weighted by a fitness function. The Markov Chain Monte Carlo algorithms have been successfully applied to multiple fields such as econometrics or computing science. It has been demonstrated that they can be combined with the Differential Evolution method to solve efficiently many optimization problems. In this work, we have combined both approaches to develop a global localization filter. The algorithm performance has been tested in simulated and real maps. The population requirements have been reduced when compared to the previous version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leonard, J.J., Durrant-Whyte, H.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. Autom. 7, 376–382 (1991)

    Article  Google Scholar 

  2. Storn, R., Price, K.: Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Moreno, L., Garrido, S., Muñoz, M.L.: Evolutionary filter for robust mobile robot localization. Robot. Auton. Syst. 54(7), 590–600 (2006)

    Article  Google Scholar 

  4. Martín, F., Moreno, L., Garrido, S., Blanco, D.: High-accuracy global localization filter for three-dimensional environments. Robotica 30, 363–378 (2011)

    Article  Google Scholar 

  5. Martín, F., Moreno, L., Blanco, D., Muñoz, M.L.: Kullback—Leibler divergence-based global localization for mobile robots. Robot. Auton. Syst. 62, 120–130 (2014)

    Article  Google Scholar 

  6. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  7. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091 (1953)

    Article  Google Scholar 

  8. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MATH  Google Scholar 

  9. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov chain monte carlo in practice. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  10. Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.: An introduction to MCMC for machine learning. Mach. Learn. 50, 5–43 (2003)

    Article  MATH  Google Scholar 

  11. Braak, C.J.F.T.: A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 16, 239–249 (2006)

    Article  MathSciNet  Google Scholar 

  12. Burgard, W., Fox, D., Henning, D., Schmidt, T.: Estimating the absolute position of a mobile robot using position probability grids. In: Proceedings of the fourteenth national conference on artificial intelligence (AAAI’96) (1996)

  13. Fox, D., Hightower, J., Liao, L., Schulz, D., Borriello, G.: Bayesian filters for location estimation. Pervasive Computing 2, 24–33 (2003)

    Article  Google Scholar 

  14. Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’00) (2000)

  15. Gamallo, C., Regueiro, C.V., Quintía, P., Mucientes, M.: Omnivision-based KLD-Monte Carlo Localization. Robot. Auton. Syst. 58, 295–305 (2010)

    Article  Google Scholar 

  16. Zhang, L., Zapata, R., Lepinay, P.: Self-adaptive Monte-Carlo localization for mobile robots using range sensors. In: Proceedings of the lEEW/RSJ international conference on intelligent robots and system (IROS’09) (2009)

  17. Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. J. Artif. Intell. Res. 11(11), 391–427 (1999)

    MATH  Google Scholar 

  18. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artif. Intell. 128, 99–141 (2001)

    Article  MATH  Google Scholar 

  19. Ronghua, L., Bingrong, H.: Coevolution based adaptive Monte Carlo localization (CEAMCL). Int. J. Adv. Robot. Syst. 1(3), 183–190 (2004)

    Google Scholar 

  20. Biswas, J., Coltin, B., Veloso, M.: Corrective gradient refinement for mobile robot localization. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’11) (2011)

  21. Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Efficient Estimation of Accurate Maximum Likelihood Maps in 3D. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’07) (2007)

  22. Montemerlo, M., Thrun, S.: FastSLAM 2.0, FastSLAM: A Scalable Method for the Simultaneous Localization and Mapping Problem in Robotics (2007)

  23. Zhang, L., Zapata, R., Lépinay, P.: Self-adaptive Monte Carlo localization for mobile robots using range finders. Robotica 30, 229–244 (2011)

    Article  Google Scholar 

  24. Moreno, L., Blanco, D., Muñoz, M. L., Garrido, S.: L1—L2-norm comparison in global localization of mobile robots. Robot. Auton. Syst. 59, 597–610 (2011)

    Article  Google Scholar 

  25. Donoso-Aguirre, F., Bustos-Salas, J.P., Torres-Torriti, M., Guesalaga, A.: Mobile robot localization using the Hausdorff distance. Robotica 26, 129–141 (2008)

    Article  Google Scholar 

  26. Fox, D., Burgard, W.: Active Markov localization for mobile robots. Robot. Auton. Syst. 25, 195–207 (1998)

    Article  Google Scholar 

  27. Arras, K.O., Castellanos, J.A., Siegwart, R.: Feature-based multi-hypothesis localization and tracking for mobile robots using geeometric constraints. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’02), (Washington DC, USA), pp 1371–1377 (2002)

  28. Back, T., Fogel, D.B., Michalewicz, Z.: Evolutionary computation I: basic algorithms and operators. IOP Publishing Ltd (2000)

  29. Back, T., Fogel, D.B., Michalewicz, Z.: Evolutionary computation II: advanced algorithms and operators. IOP Publishing Ltd (2000)

  30. Vahdat, A.R., Ashrafoddin, N.N., Ghidary, S.S.: Mobile robot global localization using differential evolution and particle swarm optimization. In: Proceedings of the congress on evolutionary computation (CEC’07) (2007)

  31. Lisowski, M.: Differential evoution approach to the localization problem for mobile robots. Master’s thesis, Technical University of Denmark (2009)

  32. Lisowski, M., Fan, Z., Ravn, O.: Differential evolution to enhance localization of mobile robots. In: Proceedings of the 2011 IEEE international conference on fuzzy systems, (Taipei, Taiwan), pp 241–247 (June 2011)

  33. Geem, Z., Kim, J., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–78 (2001)

    Article  Google Scholar 

  34. Mirkhania, M., Forsatib, R., Shahric, M., Moayedikiad, A.: A novel efficient algorithm for mobile robot localization, Robotics and Autonomous Systems (2013)

  35. Kwok, N.M., Liu, D.K., Dissanayake, G.: Evolutionary computing based mobile robot localization. Artif. Intell. 19, 857–868 (2006)

    Google Scholar 

  36. Cox, I.J., Leonard, J.J.: Modeling a dynamic environment using a Bayesian multi hypothesis approach. Artif. Intell. 66, 311–44 (1994)

    Article  MATH  Google Scholar 

  37. Austin, D.J., Jensfelt, P.: Using multiple Gaussian hypotheses to represent probability distributions for mobile robot localization. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’00), (San Francisco, USA), pp 1036–1041 (2000)

  38. Jensfelt, P., Kristensen, S.: Active global localization for a mobile robot using multiple hypothesis tracking. IEEE Trans. Robot. Autom. 17(5), 748–760 (2001)

    Article  Google Scholar 

  39. He, T., Hirose, S.: A global localization approach based on Line-segment relation matching technique. Robot. Auton. Syst. 60, 95–112 (2012)

    Article  Google Scholar 

  40. Pfaff, P., Plagemann, C., Burgard, W.: Gaussian mixture models for probabilistic localization. In: Proceedings of IEEE international conference on robotics and automation (ICRA’08), (Pasadena, CA, USA) (2008)

  41. Jochmann, G., Kerner, S., Tasse, S., Urbann, O.: Efficient multi-hypotheses unscented kalman filtering for robust localization, RoboCup 2011: Robot Soccer World Cup XV (pp. 222-233) (2012)

  42. Robert, C.P., Casella, G.: Monte Carlo statistical methods, 2nd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  43. Geweke, J.: Bayesian inference in econometric models using Monte Carlo intergration. Econometrica 24, 1317–1399 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rubinstein, R.Y.: Simulation and the Monte Carlo method. John Wiley & Sons (1981)

  45. Rubin, D.B.: Using the SIR algorithm to simulate posterior distributions. Bayesian Statistics 3(1), 395–402 (1988)

    MATH  Google Scholar 

  46. Gilks, W.R., Roberts, G.O., George, E.I.: Adaptive direction sampling. The Statistician 43, 179–189 (1994)

    Article  MATH  Google Scholar 

  47. Liu, J.S., Liang, F., Wong, W.H.: The use of multipletry method and local optimization in metropolis sampling. J. Am. Stat. Assoc. 94, 121–134 (2000)

    Article  MathSciNet  Google Scholar 

  48. Geyer, C.J.: Markov chain Monte Carlo maximum likelihood, in computing science and statistics. In: Keramigas, E. M. (ed.) Proceedings of the 23rd symposium on the interface, pp 153–163 (1991)

  49. Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65(6), 1604–1608 (1996)

    Article  Google Scholar 

  50. Liang, F.M., Wong, W.H.: Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models. J. Am. Stat. Assoc. 96, 653–666 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kou, S.C., Zhou, Q., Wong, W.H.: Equienergy sampler with applications to statistical inference and statistical mechanics. Ann. Stat. 32, 1581–1619 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Liang, F.M.: Dynamically weighted importance sampling in Monte Carlo computation. J. Am. Stat. Assoc. 97, 807–821 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Laskey, K.B., Myers, J.W.: Population Markov Chain Monte Carlo. Mach. Learn. 50, 175–196 (2003)

    Article  MATH  Google Scholar 

  54. Martín, F., Moreno, L., Muñoz, M.L., Blanco, D.: Initial population size estimation for a Differential-Evolution-based global localization filter. Int. J. Robot. Autom. 29(3), 245–258 (2014)

    Google Scholar 

  55. Zaharie, D.: Critical values for the control parameters of differential evolution algorithms (2002)

  56. Goldberg, D.E.: Genetic algorithm in search, optimization and machine learning. Addison Wesley Publishing Company (1989)

  57. Waagepetersen, R., Sorensen, D.: A tutorial on reversible jump MCMC with a view toward applications in QTL-mapping. Int. Stat. Rev. 69, 49–61 (2001)

    Article  MATH  Google Scholar 

  58. Gelman, A., Carlin, J.B., Stern, H.S., D.B.R.: Bayesian data analysis, 2nd edn. Chapman & Hall, London (2004)

  59. Se, S., Lowe, D.G., Little, J.J.: Vision-based global localization and mapping for mobile robots. IEEE Trans. Robot. 21, 3 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Martín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, L., Martín, F., Muñoz, M.L. et al. Differential Evolution Markov Chain Filter for Global Localization. J Intell Robot Syst 82, 513–536 (2016). https://doi.org/10.1007/s10846-015-0245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0245-8

Keywords

Navigation