Skip to main content

Advertisement

Log in

Reconfigurable assembly line balancing for cloud manufacturing

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In an attempt to react to the increasing imbalance of assembly line due to the high uncertainty of assembly resources in the cloud manufacturing environment, this study investigates the reconfigurable assembly line balancing problem (ALBP) in a cloud manufacturing environment based on the actual production process. We designed the assembly precedence relation model on the basis of analyzing the characteristics and categories of the reconfigurable ALBP. Thereafter, an optimization model of ALBP under traditional mode is established. Combined with the dynamic and collaborative operation of cloud manufacturing, a workstation information sharing framework for cloud manufacturing is designed, and an equilibrium optimization model of ALBP in cloud manufacturing environment is developed to obtain the maximum productivity and the minimum the load smoothness. Moreover, an improved memetic algorithm is proposed to solve the optimization model, which has strong global and local search capabilities compared with the general algorithm. Finally, performance of the proposed approach is tested on a set of examples, and distinguished results can be acquired by comparing with particle swarm optimization algorithm, simulated annealing and genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ağpak, K. (2010). An approach to find task sequence for re-balancing of assembly lines. Assembly Automation, 30(4), 378–387.

    Article  Google Scholar 

  • Bartholdi, J. J. (1993). Balancing 2-sided assembly lines—A case-study. International Journal of Production Research, 31(10), 2447–2461.

    Article  Google Scholar 

  • Bartz-Beielstein, T., Chiarandini, M., Paquete, L., et al. (2010). Experimental methods for the analysis of optimization algorithms (pp. 311–336). Berlin: Springer.

    Book  Google Scholar 

  • Battaia, O., & Dolgui, A. (2013). A taxonomy of line balancing problems and their solution approaches. International Journal of Production Economics, 142, 259–277.

    Article  Google Scholar 

  • Baybars, I. (1986). Survey of exact algorithms for the simple assembly line balancing problem. Management Science, 32(8), 909–932.

    Article  Google Scholar 

  • Bowman, E. H. (1960). Assembly-line balancing by linear programming. Operation Research, 8(3), 385–389.

    Article  Google Scholar 

  • Boysen, N., & Fliedner, M. (2008). A versatile algorithm for assembly line balancing. European Journal of Operational Research, 184(1), 39–56.

    Article  Google Scholar 

  • Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line balancing problems. European Journal of Operational Research, 183, 674–693.

    Article  Google Scholar 

  • Bryton, B. (1954). Balancing of a continuous production line. Evanston, IL: Northwestern University.

    Google Scholar 

  • Chen, R. S., Lu, K. Y., & Yu, S. C. (2002). A hybrid genetic algorithm approach on multi-objective of assembly planning problem. Engineering Applications of Artificial Intelligence, 15(5), 447–457.

    Article  Google Scholar 

  • Çil, Z. A., Mete, S., & Ağpak, K. (2016). A goal programming approach for robotic assembly line balancing problem. IFAC-PapersOnLine, 49(12), 938–942.

    Article  Google Scholar 

  • Delice, Y., Aydogan, E. K., & Ozcan, U. (2016). Stochastic two-sided U-type assembly line balancing: A genetic algorithm approach. International Journal of Production Research, 54(11), 1–23.

    Article  Google Scholar 

  • Delice, Y., Aydoğan, E. K., Özcan, U., et al. (2017). A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing. Journal of Intelligent Manufacturing, 28(1), 23–36.

    Article  Google Scholar 

  • Emde, S., Boysen, N., & Scholl, A. (2010). Balancing mixed-model assembly lines: A computational evaluation of objectives to smoothen workload. International Journal of Production Research, 48(11), 3173–3191.

    Article  Google Scholar 

  • Erel, E., & Gokcen, H. (1999). Shortest-route formulation of mixed-model assembly line balancing problem. European Journal of Operation Research, 116(1), 194–204.

    Article  Google Scholar 

  • Gamberini, R., Grassi, A., & Rimini, B. (2006). A new multi-objective heuristic algorithm for solving the stochastic assembly line re-balancing problem. International Journal of Production Economics, 102(2), 226–243.

    Article  Google Scholar 

  • Ghosh, S., & Gagnon, R. J. (1989). A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems. International Journal of Production Research, 27, 637–670.

    Article  Google Scholar 

  • Giriraj, M., & Muthu, S. (2012). From cloud computing to cloud manufacturing excution assembly system. Communications in Computer and Information Science, 330, 303–312.

    Article  Google Scholar 

  • Guo, X. P., Yang, G. K., & Wu, Z. M. (2005). A hybrid self-adjusted memetic algorithm for multi-objective optimization. Lecture Notes in Computer Science, 3789, 663–672.

    Article  Google Scholar 

  • Gurevsky, E., Hazir, O., Battaïa, O., et al. (2013). Robust balancing of straight assembly lines with interval task times. Journal of the Operational Research Society, 64(11), 1607–1613.

    Article  Google Scholar 

  • Jackson, J. R. (1956). A computing procedure for a line balancing problem management science. Management Science, 7(3), 261–271.

    Article  Google Scholar 

  • Kim, Y. K., Kim, J. Y., & Kim, Y. (2000). A coevolutionary algorithm for balancing and sequencing in mixed model assembly lines. Applied Intelligence, 13(3), 247–258.

    Article  Google Scholar 

  • Kucukkoc, I., Buyukozkan, K., Satoglu, S. I., et al. (2015). A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-015-1150-5.

  • Kucukkoc, I., & Zhang, D. Z. (2016). Mixed-model parallel two-sided assembly linebalancing problem: A flexible agent-based ant colony optimization approach. Computers & Industrial Engineering, 97, 58–72.

    Article  Google Scholar 

  • Levitin, G., Rubinovitz, J., & Shnits, B. (2006). A genetic algorithm for robotic assembly line balancing. European Journal of Operational Research, 168(3), 811–825.

    Article  Google Scholar 

  • Li, B. D. (2013). Analysis and applied research on the assembly production line balance. Chongqing: Chongqing Jiaotong University.

    Google Scholar 

  • Li, M., Li, S., Xia, X. H., et al. (2013). Rules combination algorithm of assembly line balancing problem for large-scale multiple station. Computer Integrated Manufacturing Systems, 19(11), 2780–2787.

    Google Scholar 

  • Li, Y. D., & Liu, J. S. (2012). Improved ant colony optimization for assembly line balancing-II problem. Computer Integrated Manufacturing Systems, 13(8), 1632–1638.

    Google Scholar 

  • Li, Z., Dey, N., Ashour, A. S., et al. (2017). Discrete cuckoo search algorithms for two-sided robotic assembly line balancing problem. Neural Computing and Applications. https://doi.org/10.1007/s00521-017-2855-5.

  • Li, Z. X., Tang, Q. H., Lin, B., et al. (2015). A hybrid particle swarm optimization for two-sided assembly line balancing problem of type II. Machinery Design and Manufacture, 1, 113–116.

    Google Scholar 

  • Li, Z. X., Tang, Q. H., Mao, Y. N., et al. (2016). An iterated local search algorithm for mixed-model two-sided assembly line balance problem. Mechinery Design & Manufacture, 3, 54–57.

    Google Scholar 

  • López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., et al. (2016). The irace package: Iterated race for automatic algorithm configuration. Operations Research Perspectives, 3, 43–58.

    Article  Google Scholar 

  • López-Ibáñez, M., & Stützle, T. (2012). The automatic design of multi-objective ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation, 16(6), 861–875.

    Article  Google Scholar 

  • Makssoud, F., Battaïa, O., Dolgui, A., et al. (2015). Re-balancing problem for assembly lines: New mathematical model and exact solution method. Assembly Automation, 35(1), 16–21.

    Article  Google Scholar 

  • Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithm. Pasadena, California, USA: Technical Report Caltech Concurrent Computation Prgram, Report 826, California Institute of Technology.

  • Ning, F. H., Zhou, W. Z., Zhang, F. Y., et al. (2011). The architecture of cloud manufacturing and its key technologies research. In IEEE international conference on cloud computing and intelligence systems (pp. 259–263).

  • Otto, A., Otto, C., & Scholl, A. (2013). Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing. European Journal of Operational Research, 228(1), 33–45.

    Article  Google Scholar 

  • Otto, A., & Scholl, A. (2011). Incorporating ergonomic risks into assembly line balancing. European Journal of Operational Research, 212(2), 277–286.

    Article  Google Scholar 

  • Quyen, N. T. P., Chen, J. C., & Yang, C. L. (2016). Hybrid genetic algorithm to solve resource constrained assembly line balancing problem in footwear manufacturing. Soft Computing, 3, 1–17.

    Google Scholar 

  • Rong, A. Y., Toth, A., Nevalainen, O. S., et al. (2011). Modeling the machine configuration and line-balancing problem of a PCB assembly line with modular placement machines. International Journal of Advanced Manufacturing Technology, 54, 349–360.

    Article  Google Scholar 

  • Rosenberg, O., & Ziegler, H. (1992). A comparison of heuristic algorithms for cost-oriented assembly line balancing. Zeitschrift Für Operations Research, 36(6), 477–495.

    Google Scholar 

  • Roshani, A., & Nezami, F. G. (2017). Mixed-model multi-manned assembly line balancing problem: A mathematical model and a simulated annealing approach. Assembly Automation, 37(1), 34–50.

    Article  Google Scholar 

  • Saif, U., Guan, Z., Zhang, L., et al. (2017). Multi-objective artificial bee colony algorithm for order oriented simultaneous sequencing andbalancing of multi-mixed model assembly line. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-017-1316-4.

  • Salveson, M. E. (1955). The assembly line balancing problem. Journal of Industrial Engineering, 6(3), 18–25.

    Google Scholar 

  • Scholl, A. (1993). Data of assembly line balancing problems. Schriften zur Quantitativen Betriebswirtschaftslehre, 16, 1–28.

    Google Scholar 

  • Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 168, 669–693.

    Article  Google Scholar 

  • Scholl, A., Boysen, N., & Fliedner, M. (2009). Optimally solving the alternative subgraphs assembly line balancing problem. Annals of Operations Research, 172(1), 243–258.

    Article  Google Scholar 

  • Scholl, A., & Voss, S. (1996). Simple assembly line balancing-heuristic approaches. Journal of Heuristics, 2, 217–244.

    Article  Google Scholar 

  • Sikora, C. G. S., Lopes, T. C., & Magatão, L. (2017). Traveling worker assembly line (re)balancing problem: Model, reduction techniques, and real case studies. European Journal of Operational Research, 259(3), 949–971.

    Article  Google Scholar 

  • Tao, F., Zhang, L., Guo, H., et al. (2011). Typical characteristics of cloud manufacturing and several key issues of cloud service composition. Computer Integrated Manufacturing Systems, 17(3), 477–486.

    Google Scholar 

  • Tiacci, L. (2012). Event and object oriented simulation to fast evaluate operational objectives of mixed model assembly lines problems. Simulation Modelling Practice and Theory, 24, 35–48.

    Article  Google Scholar 

  • Tiacci, L. (2015). Simultaneous balancing and buffer allocation decisions for the design of mixed-model assembly lines with parallel workstations and stochastic task times. International Journal of Production Economics, 162, 201–215.

    Article  Google Scholar 

  • Tonge, F. M. (1960). Summary of a heuristic line balancing procedure. Management Science, 7(1), 21–42.

    Article  Google Scholar 

  • Triki, H., Mellouli, A., Hachicha, W., et al. (2016). A hybrid genetic algorithm approach for solving an extension of assembly line balancing problem. International Journal of Computer Integrated Manufacturing, 29(5), 504–519.

    Article  Google Scholar 

  • Wang, C., Bi, Z., & Xu, L. D. (2014). IoT and cloud computing in automation of assembly modeling systems. IEEE Transactions on Industrial Informatics, 10(2), 1426–1434.

    Article  Google Scholar 

  • Wu, X. Y. (2007). Research on the assembly production line balance. Shanghai: Shanghai Jiao Tong University.

    Google Scholar 

  • Wu, J. H., Xia, S. Z., & Cao, S. H. (1999). A study on mathematical model and algorithms for ALB. Journal of System Simulation, 11(5), 358–361.

    Google Scholar 

  • Xiao, H., Li, Y., Yu, J. F., et al. (2014). Dynamic assembly simplification for virtual assembly process of complex product in cloud computing environment. Proceedings of the Institution of Mechanical Engineers, 228(10), 1198–1213.

    Article  Google Scholar 

  • Xu, T. (2011). Study on assembly line balance. Shanghai: Shanghai Jiao Tong University.

    Google Scholar 

  • Xu, L. Y., Cai, B. J., BaS, Q., et al. (2016). Assembly line balancing problem-2 with task zoning constraints and workstation related constraints. Journal of Tongji University, 44(2), 269–275.

    Google Scholar 

  • Xu, S., & Li, F. M. (2013). Study on reconfiguration approach of mixed-model assembly line based on petri net modeling of workstations. Applied Mechanics and Materials, 263–266(PART 1), 3265–3273.

    Google Scholar 

  • Yu, S. W. (2014). Case study and application of MATLAB optimization algorithm (pp. 156–178). Beijing: Tsinghua University Press.

    Google Scholar 

  • Yuan, M. H., Deng, K., Chaovalitwongse, W. A., et al. (2017). Multi-objective optimal scheduling of reconfigurable assembly line for cloud manufacturing. Optimization Methods and Software, 32(3), 581–593.

    Article  Google Scholar 

  • Yuan, M. H., Li, D. B., & YU, M. J. (2008). Mixed-model assembly line balance for mass customization. Computer Integrated Manufacturing Systems, 14(1), 79–83+131.

    Google Scholar 

  • Zhu, Y. J., Dong, C. F., & Xu, L. (2010). Research on the supplier evaluation model based on preference constraint cone. ICLEM 2010: Logistics for Sustained Economic Development: Infrastructure, Information, 387, 465–472.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Humanities and Social Sciences of Ministry of Education Planning Fund under Grant Number 17YJA630127 and Changzhou Sci & Tech Program under Grant Number CJ20159052. Those who supported this submission are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghai Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Yu, H., Huang, J. et al. Reconfigurable assembly line balancing for cloud manufacturing. J Intell Manuf 30, 2391–2405 (2019). https://doi.org/10.1007/s10845-018-1398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1398-7

Keywords

Navigation