Skip to main content
Log in

Bang–bang property for an uncertain saddle point problem

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this paper, we propose a bang–bang control model for a saddle point problem using the optimistic value criterion. By using equation of optimality in uncertain optimal control, a bang–bang control problem is investigated. And then, an example is given to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ajorlou, S., & Shams, I. (2013). Artificial bee colony algorithm for CONWIP production control system in a multi-product multi-machine manufacturing environment. Journal of Intelligent Manufacturing, 24(6), 1145–1156.

    Article  Google Scholar 

  • Balakrishnan, A. V. (1980). On stochastic bang bang control. Applied Mathematics and Optimization, 6, 91–96.

    Article  Google Scholar 

  • Basar, T. (1976). Some thoughts on saddle-point conditions and information structures in zero-sum differential games. Journal of Optimization Theory and Applications, 18(1), 165–170.

    Article  Google Scholar 

  • Basar, T. (1977). Two general properties of the saddle-point solutions of dynamic games. IEEE Transactions on Automatic Control, 22(1), 124–126.

    Article  Google Scholar 

  • Basar, T. (1981). On the saddle-point solution of a class of stochastic differential games. Journal of Optimization Theory and Applications, 33(4), 539–556.

    Article  Google Scholar 

  • Basar, T., & Olsder, G. J. (1982). Dynamic noncooperative game theory. New York: Acadmic.

    Google Scholar 

  • Bellman, R., Glicksberg, I., & Gross, O. (1956). On the “bang–bang” control problem. Quarterly of Applied Mathematics, 14, 11–18.

  • Beneš, V. E. (1974). Girsanov functionals and optimal bang–bang laws for final value stochastic control. Stochastic Processes and Their Applications, 2(2), 127–140.

    Article  Google Scholar 

  • Bessenouci, H. N., Sari, Z., & Ghomri, L. (2012). Metaheuristic based control of a flow rack automated storage retrieval system. Journal of Intelligent Manufacturing, 23(4), 1157–1166.

    Article  Google Scholar 

  • Chang, C. (2012). Collaborative decision making algorithm for selection of optimal wire saw in photovoltaic wafer manufacture. Journal of Intelligent Manufacturing, 23(3), 533–539.

    Article  Google Scholar 

  • Chen, X. (2011). American option pricing formula for uncertain financial market. International Journal of Operations Research, 8(2), 32–37.

    Google Scholar 

  • Chen, X., & Liu, B. (2010). Existence and uniqueness theorem for uncertain differential equations. Fuzzy Optimization and Decision Making, 9(1), 69–81.

    Article  Google Scholar 

  • Chen, X., & Ralescu, D. A. (2013). Liu process and uncertain calculus. Journal of Uncertainty Analysis and Applications, 1, 3.

    Article  Google Scholar 

  • Deng, L., & Zhu, Y. (2013). Uncertain optimal control of linear quadratic models with jump. Mathematical and Computer Modelling, 57(9–10), 2432–2441.

    Article  Google Scholar 

  • Fleming, W. H. (1961). The convergence problem for differential games. Journal of Mathematical Analysis and Applications, 3(1), 102–116.

    Article  Google Scholar 

  • Fujita, Y., & Morimoto, H. (1987). On bang–bang solutions of stochastic differential games. IEEE Trasactions on Automatic Control, AC–32(6), 535–537.

    Article  Google Scholar 

  • Gao, Y., Yang, L., Li, S. & Kar, S. (2015). On distribution function of the diameter in uncertain graph. Information Sciences, 296, 61–74.

  • Gao, Y., & Yao, K. (2014). Continuous dependence theorems on solutions of uncertain differential equations. Applied Mathematical Modelling, 38, 3031–3037.

    Article  Google Scholar 

  • Ge, X., & Zhu, Y. (2012). Existence and uniqueness theorem for uncertain delay differential equations. Journal of Computational Information Systems, 8(20), 8341–8347.

    Google Scholar 

  • Ge, X., & Zhu, Y. (2013). A necessary condition of optimality for uncertain optimal control problem. Fuzzy Optimization and Decision Making, 12(1), 41–51.

    Article  Google Scholar 

  • Isaacs, R. (1954–1956). Differential Games I, II, III, IV, Rand cooperation Research Memorandum RM-1391, 1399, 1411, 1468, Santa Monica, CA.

  • Isaacs, R. (1975). Differential games (2nd ed.). Huntington, NY: Kruger Publishing Company.

    Google Scholar 

  • Kang, Y., & Zhu, Y. (2012). Bang-bang optimal control for multi-stage uncertain systems. Information: An International Interdisciplinary Journal, 15(8), 3229–3237.

    Google Scholar 

  • Lamond, B. F., Sodhi, M. S., Noël, M., & Assani, O. A. (2014). Dynamic speed control of a machine tool with stochastic tool life: Analysis and simulation. Journal of Intelligent Manufacturing, 25(5), 1153–1166.

    Article  Google Scholar 

  • Liu, B. (2007). Uncertainty theory (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Liu, B. (2008). Fuzzy process, hybrid process and uncertain process. Journal of Uncertain Systems, 2(1), 3–16.

    Google Scholar 

  • Liu, B. (2009). Some research problems in uncertainty theory. Journal of Uncertain systems, 3(1), 3–10.

    Google Scholar 

  • Liu, B. (2009). Theory and practice of uncertain programming (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Liu, B. (2010). Uncertainty theory: A branch of mathematics for modeling human uncertainty. Berlin: Springer.

    Book  Google Scholar 

  • Liu, B. (2012). Why is there a need for uncertainty theory. Journal of Uncertain Systems, 6(1), 3–10.

    Google Scholar 

  • Liu, B. (2013). Polyrectangular theorem and independence of uncertain vectors. Journal of Uncertainty Analysis and Applications, 1, 9.

    Article  Google Scholar 

  • Liu, B. (2014). Uncertainty distribution and independence of uncertain processes. Fuzzy Optimization and Decision Making, 13(3), 259–271.

    Article  Google Scholar 

  • Liu, Y. (2012). An analytic method for solving uncertain differential equations. Journal of Uncertain Systems, 6(4), 244–249.

    Google Scholar 

  • Morimoto, H., & Ohashi, M. (1990). On linear stochastic differential games with average cost criterions. Journal of Optimization Theory and Applications, 64(1), 127–140.

    Article  Google Scholar 

  • Peng, J., & Yao, K. (2011). A new option pricing model for stocks in uncertainty markets. International Journal of Operations Research, 8(2), 18–26.

    Google Scholar 

  • Sheng, L., & Zhu, Y. (2013). Optimistic value model of uncertain optimal control. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 21(Suppl. 1), 75–87.

    Article  Google Scholar 

  • Tao, N. & Zhu, Y. (2015). Attractivity and stability analysis of uncertain differential systems. International Journal of Bifurcation and Chaos.

  • Wang, C., Tang, W., & Zhao, R. (2008). Static Bayesian games with finite fuzzy types and the existence of equilibrium. Information Sciences, 178(24), 4688–4698.

    Article  Google Scholar 

  • Xu, X., & Zhu, Y. (2012). Uncertain bang–bang control for continuous time model. Cybernetics and Systems: An International Journal, 43(6), 515–527.

    Article  Google Scholar 

  • Yang, X., & Gao, J. (2013). Uncertain differential games with application to capitalism. Journal of Uncertainty Analysis and Application, 1, 17.

    Article  Google Scholar 

  • Yang, L., Liu, P., Li, S., Gao, Y., & Ralescu, D. A. (2015). Reduction methods of type-2 uncertain variables and their applications to solid transportation problem. Information Sciences, 291, 204–237.

    Article  Google Scholar 

  • Yao, K. (2013). A type of nonlinear uncertain differential equations with analytic solution. Journal of Uncertainty Analysis and Application, 1, 8.

    Article  Google Scholar 

  • Yao, K., & Chen, X. (2013). A numerical method for solving uncertain differential equations. Journal of Intelligent and Fuzzy Systems, 25(3), 825–832.

    Google Scholar 

  • Yao, K., Gao, J., & Gao, Y. (2013). Some stability theorems of uncertain differential equation. Fuzzy Optimization and Decision Making, 12(1), 3–13.

    Article  Google Scholar 

  • Yedes, Y., Chelbi, A., & Rezg, N. (2012). Quasi-optimal integrated production, inventory and maintenance policies for a single-vendor single-buyer system with imperfect production process. Journal of Intelligent Manufacturing, 23(4), 1245–1256.

    Article  Google Scholar 

  • Zhu, Y. (2010). Uncertain optimal control with application to a portfolio selection model. Cybernetics and Systems: An International Journal, 41(7), 535–547.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 61273009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanguo Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhu, Y. Bang–bang property for an uncertain saddle point problem. J Intell Manuf 28, 605–613 (2017). https://doi.org/10.1007/s10845-014-1003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-1003-7

Keywords

Navigation