Skip to main content
Log in

Condition monitoring of the cutting process using a self-organizing spiking neural network map

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents a new approach to sensor based condition monitoring using a self-organizing spiking neuron network map. Experimental evidence suggests that biological neural networks, which communicate through spikes, use the timing of these spikes to encode and compute information in a more efficient way. The paper introduces the basis of a simplified version of the Self-Organizing neural architecture based on Spiking Neurons. The fundamental steps for the development of this computational model are presented as well as some experimental evidence of its performance. It is shown that this computational architecture has a greater potential to unveil embedded information in tool wear monitoring data sets and that faster learning occurs if compared to traditional sigmoidal neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliustaoglu C., Ertunc H., Ocak H. (2009) Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing 23: 539–546. doi:10.1016/j.ymssp.2008.02.010

    Article  Google Scholar 

  • Balazinski M., Czogala E., Jemielniak K., Leski J. (2000) Tool condition monitoring using artificial intelligence methods. Engineering Applications of Artificial Intelligence 15: 73–80. doi:10.1016/S0952-1976(02)00004-0

    Article  Google Scholar 

  • Bugmann G. (1997) Biologically plausible neural computation. Bio Systems 40: 11–19. doi:10.1016/0303-2647(96)01625-5

    Google Scholar 

  • Byrne G., Dornfeld D., Inasaki I., Ketteler G., Konig W., Teti R. (1995) Tool condition monitoring (TCM)—the status of research and industrial application. Annals of CIRP 44: 541–567. doi:10.1016/S0007-8506(07)60503-4

    Article  Google Scholar 

  • Choudhury S., Jain V., Rao C. (1990) On-line monitoring of tool wear in turning using a neural network. International Journal of Machine Tools & Manufacture 39: 489–504. doi:10.1016/S0890-6955(98)00032-7

    Article  Google Scholar 

  • Cybenko G. (1989) Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals, and Systems 2: 303–314. doi:10.1007/BF02551274

    Article  Google Scholar 

  • Dimla D. (2000) Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods. International Journal of Machine Tools & Manufacture 40: 1073–1098. doi:10.1016/S0890-6955(99)00122-4

    Article  Google Scholar 

  • Dimla D., Lister P., Leighton N. (1997) Neural network solutions to the tool condition monitoring problem in metal cutting – a critical review of methods. International Journal of Machine Tools & Manufacture 37: 1219–1241. doi:10.1016/S0890-6955(97)00020-5

    Article  Google Scholar 

  • Gerstner W. (1999) Spiking neurons. In: Maass W., Bishop C. (eds) Pulsed neural networks. MIT Press, Cambridge

    Google Scholar 

  • Gerstner, W. (2002). Integrate-and-fire neurons and networks. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (2nd ed., pp. 577–581). Cambridge, MA: The MIT Press.

  • Hodgkin A., Huxley A. (1952) A quantitative description of membrane current and its application to conduction and excitation in a nerve. The Journal of Physiology 117: 500–544

    Google Scholar 

  • Hornik K., Stinchcombe M., White H. (1989) Multilayer feedforward networks are universal approximators. Neural Networks 2: 359–366. doi:10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  • ISO 3685. (1977). Tool-life testing with single-point turning tools.

  • Jantunen E. (2002) A summary of methods applied to tool condition monitoring in drilling. International Journal of Machine Tools & Manufacture 42: 997–1010. doi:10.1016/S0890-6955(02)00040-8

    Article  Google Scholar 

  • Kohonen T. (1990) The self organizing map. Proceedings of the IEEE 78: 1464–1480. doi:10.1109/5.58325

    Article  Google Scholar 

  • Lennox B., Montague G., Frith A., Gent C., Bevan V. (2001) Industrial application of neural networks—an investigation. Journal of Process Control 11: 497–507. doi:10.1016/S0959-1524(00)00027-5

    Article  Google Scholar 

  • Maass W. (1997) Networks of spiking neurons: The third generation of neural network models. Neural Networks 10: 1656–1671. doi:10.1016/S0893-6080(97)00011-7

    Article  Google Scholar 

  • Maass W. (1999) Computation with spiking neurons. In: Maass W., Bishop C. (eds) Pulsed neural networks. MIT Press, Cambridge

    Google Scholar 

  • Maass W., Ruf B. (1999) On computation with pulses. Information and Computation 148: 202–218. doi:10.1006/inco.1998.2743

    Article  Google Scholar 

  • Natschläger T., Maass W. (2002) Spiking neurons and the induction of finite state machines. Theoretical Computer Science 287: 251–265. doi:10.1016/S0304-3975(02)00099-3

    Article  Google Scholar 

  • Parlos A., Rais O., Atiya A. (2000) Multi-step-ahead prediction using recurrent neural networks. Neural Networks 13: 765–786. doi:10.1016/S0893-6080(00)00048-4

    Article  Google Scholar 

  • Salgado D., Alonso F. (2007) An approach based on current and sound signals for in-process tool wear monitoring. International Journal of Machine Tools & Manufacture 47: 2140–2152. doi:10.1016/j.ijmachtools.2007.04.013

    Article  Google Scholar 

  • Silva, R. G., Reuben, R. L., Baker, K. J., & Wilcox, S. J. (1995). A neural network approach to tool wear monitoring. In 8th International Congress on Condition Monitoring and Diagnostic Engineering Management, Queen’s University–Kingston, Ontário, Canada, June 26–28.

  • Silva R., Reuben R., Baker K., Wilcox S. (1998) Tool wear monitoring of turning operations by neural network and expert system classification of a feature set generated from multiple sensors. Mechanical Systems and Signal Processing 12: 319–332. doi:10.1006/mssp.1997.0123

    Article  Google Scholar 

  • Silva R., Reuben R., Baker K., Wilcox S. (2000) The adaptability of a tool wear monitoring system under changing cutting conditions. Mechanical Systems and Signal Processing 14: 287–298. doi:10.1006/mssp.1999.1286

    Article  Google Scholar 

  • Sun J., Hong G., Wong Y., Rahman M., Wang Z. (2006) Effective training data selection in tool condition monitoring system. International Journal of Machine Tools & Manufacture 46: 218–224. doi:10.1016/j.ijmachtools.2005.04.005

    Article  Google Scholar 

  • Warnecke, A., Jenewein, A., & Reinfelder, A. (1990). Tool monitoring based on process identification, monitoring and control for manufacturing processes. In Winter Annual Meeting of the ASME, Dallas, TX, USA, pp. 43–55.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui G. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, R.G. Condition monitoring of the cutting process using a self-organizing spiking neural network map. J Intell Manuf 21, 823–829 (2010). https://doi.org/10.1007/s10845-009-0258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-009-0258-x

Keywords

Navigation