Skip to main content

Advertisement

Log in

Evaluating the impact of non-lethal DNA sampling on two butterflies, Vanessa cardui and Satyrodes eurydice

Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Genetic sampling of endangered species can inform conservation management and potentially aid the long-term survival of a species. However, when dealing with very small populations of rare species, the sacrifice of whole animals may not be desirable or permitted. We set out to develop a demonstrably non-lethal method of obtaining DNA from the federally-endangered Mitchell’s satyr butterfly, Neonympha mitchellii mitchellii. Because of its endangered status we developed our methods on related species. In greenhouse and fields trials, we demonstrate that removal of small amounts of hind wing (2–3 mm2) has no significant impact on the behavior or survival of Vanessa cardui and Satyrodes eurydice. Based on these studies we were successful in obtaining a permit from the US Fish and Wildlife Service to sample DNA from N. m. mitchellii populations. We suggest that our results can be extended to the sampling of other rare butterfly species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Allendorf F, Luikart G (2007) Conservation and the genetics of populations. Blackwell, Malden

    Google Scholar 

  • Barton B, Bach C (2005) Habitat use by the federally endangered mitchell’s satyr butterfly (Neonympha mitchellii mitchellii) in a Michigan Prairie Fen. Am Midl Nat 153:41–51. doi:10.1674/0003-0031(2005)153[0041:HUBTFE]2.0.CO;2

    Article  Google Scholar 

  • Bolker B (2008) Ecological models and data in R. Princeton University Press, Princeton

    Google Scholar 

  • Breslow N, Clayton D (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25. doi:10.2307/2290687

    Article  Google Scholar 

  • Carter C (1992) Morphological senescence and longevity: an experiment relating wing wear and life span in foraging wild bumble bees. J Anim Ecol 61:225–231. doi:10.2307/5525

    Article  Google Scholar 

  • Châline N, Ratnieks F, Raine N (2004) Non-lethal sampling of honey bee, Apis mellifera, DNA using wing tips. Apidologie (Celle) 35:311–318. doi:10.1051/apido:2004015

    Article  CAS  Google Scholar 

  • Dudley R (2000) The biomechanics of insect flight: form, function, evolution. Princeton University Press, Princeton

    Google Scholar 

  • Edmunds M (1974) Significance of beak marks on butterfly wings. Oikos 25:117–118. doi:10.2307/3543555

    Article  Google Scholar 

  • Ellington C (1984) The aerodynamics of flapping animal flight. Am Zool 24:95–105

    Google Scholar 

  • Fincke O, Hadrys H (2001) Unpredictable offspring survivorship in the damselfly. Megaloprepus coerulatus, shapes parental behavior, constrains sexual selection, and challenges traditional fitness estimates. Evol Int J Org Evol 55:762–772. doi:10.1554/0014-3820(2001)055[0762:UOSITD]2.0.CO;2

    CAS  Google Scholar 

  • Gerken T, Kurtz J, Sauer KP et al (1998) DNA preparation and efficient microsatellite analysis from insect hemolymph. Electrophoresis 19:3069–3070. doi:10.1002/elps.1150191804

    Article  CAS  PubMed  Google Scholar 

  • Goldstein P, Hall S, Hart B, et al (2004) Evaluation of relationships and conservation status within the Neonympha mitchellii complex (Lepidoptera: Nymphalidae). Report for the US Fish and Wildlife Service

  • Gompert Z, Nice C, Fordyce J et al (2006) Identifying units for conservation using molecular systematics: the cautionary tale of the Karner blue butterfly. Mol Ecol 15:1759–1768. doi:10.1111/j.1365-294X.2006.02905.x

    Article  CAS  PubMed  Google Scholar 

  • Hanski I, Pakkala I, Kuussaari M et al (1995) Metapopulation persistence of an endangered butterfly in a fragmentation landscape. Oikos 72:21–28. doi:10.2307/3546033

    Article  Google Scholar 

  • Hart B (2004) A survey for the Mitchell’s satyr (Neonympha mitchellii French) in the national forests in Alabama (Final Report). Report for the US Fish and Wildlife Service

  • Hebert P, Penton E, Burns J et al (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817. doi:10.1073/pnas.0406166101

    Article  CAS  PubMed  Google Scholar 

  • Hedenström A, Ellington C, Wolf T (2001) Wing wear, aerodynamics and flight energetics in bumblebees (Bombus terrestris): an experimental study. Funct Ecol 15:417–422. doi:10.1046/j.0269-8463.2001.00531.x

    Article  Google Scholar 

  • Hein E, Myers O (2000) The effect of surveyor experience on frequency of recapture in pierid butterflies. Southwest Nat 45:67–69. doi:10.2307/3672553

    Article  Google Scholar 

  • Heinrich B (1993) The hot-blooded insects: mechanisms and evolution of thermoregulation. Harvard University Press, Cambridge

    Google Scholar 

  • Holehouse K, Hammond R, Bourke A (2003) Non-lethal sampling of DNA from bumble bees for conservation genetics. Insectes Soc 50:277–285. doi:10.1007/s00040-003-0672-6

    Article  Google Scholar 

  • Kingsolver J (1999) Experimental analyses of wing size, flight, and survival in the western white butterfly. Evol Int J Org Evol 53:1479–1490. doi:10.2307/2640894

    Google Scholar 

  • Lebreton J, Burnham K, Clobert J et al (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118. doi:10.2307/2937171

    Article  Google Scholar 

  • Lederhouse R (1982) Factors affecting equal catchability in two swallowtail butterflies, Papilio polyxenes and P. glaucus. Ecol Entomol 7:379–383

    Article  Google Scholar 

  • Longhorn S, Nicholas M, Chuter J et al (2007) The utility of molecular markers from non-lethal DNA samples of the CITES II protected “tatantula” Brachypelma vagans (Araneae, Theraphosidae). J Acarol 35:278–292

    Google Scholar 

  • Lushai G, Fjellsted W, Marcovitch O (2000) Application of molecular techniques to non-lethal tissue samples of endangered butterfly populations (Parnassius apollo L.) in Norway for conservation management. Biol Conserv 94:43–50. doi:10.1016/S0006-3207(99)00165-2

    Article  Google Scholar 

  • Morton A (1982) The effects of marking and capture on recapture frequencies of butterflies. Oecologia 52:105–110. doi:10.1007/BF00377143

    Article  Google Scholar 

  • Petersen S, Mason T, Akber S et al (2007) Species Identification of tarantulas using exuviae for international wildlife law enforcement. Conserv Genet 8:497–502

    Article  Google Scholar 

  • Roble S, Kessler C, Grimes B et al (2001) Biology and conservation status of Neonympha mitchellii, a globally rare butterfly new to the Virginia fauna. Banisteria 18:3–23

    Google Scholar 

  • Rodd F, Plowright R, Owen R (1980) Mortality rates of adult bumble bee workers (Hymenoptera: Apidae). Can J Zool 58:1718–1721

    Article  Google Scholar 

  • Rose O, Brookes M, Mallet J (1994) A quick and simple nonlethal method for extracting DNA from butterfly wings. Mol Ecol 3:275. doi:10.1111/j.1365-294X.1994.tb00064.x

    Article  CAS  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M et al (1998) Inbreeding and extinction in a butterfly metapopulations. Nature 392:491–494. doi:10.1038/33136

    Article  CAS  Google Scholar 

  • Starks P, Peters J (2002) Semi-nondestructive genetic sampling from live eusocial wasps, Polistes dominulus and Polistes fuscatus. Insectes Soc 49:20–22. doi:10.1007/s00040-002-8272-4

    Article  Google Scholar 

  • Taberlet P, Waits L (1998) Non-invasive genetic sampling. Trends Ecol Evol 13:26–27. doi:10.1016/S0169-5347(97)01276-7

    Article  Google Scholar 

  • Taberlet P, Waits L, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327. doi:10.1016/S0169-5347(99)01637-7

    Article  PubMed  Google Scholar 

  • Vogler A, DeSalle R (1994) Diagnosing units of conservation management. Conserv Biol 8:354–363. doi:10.1046/j.1523-1739.1994.08020354.x

    Article  Google Scholar 

  • Williams B (2002) Conservation genetics, extinction, and taxonomic status: a case history of the regal fritillary. Conserv Biol 16:148–157. doi:10.1046/j.1523-1739.2002.00147.x

    Article  Google Scholar 

  • Wourms M, Wasserman F (1985) Butterfly wing markings are more advantageous during handling than during the initial strike of an avian predator. Evol Int J Org Evol 39:845–851. doi:10.2307/2408684

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank members of the Mitchell’s Satyr Recovery Working Group and Carrie Tansey of the USFWS for early discussions that shaped this research. We also thank Jessica Albright, Douglas Badgero, Alissa Berro, Jordan Shelley and Grace O’Connor of Michigan State University, and two anonymous reviewers. Many of the techniques and analyses in this paper were developed using tools learned in the ELME (Enhancing Linkages between Math and Ecology) course at the WK Kellogg Biological Station. This research was partially funded by a Plant Sciences Fellowship to CAH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Hamm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamm, C.A., Aggarwal, D. & Landis, D.A. Evaluating the impact of non-lethal DNA sampling on two butterflies, Vanessa cardui and Satyrodes eurydice . J Insect Conserv 14, 11–18 (2010). https://doi.org/10.1007/s10841-009-9219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-009-9219-0

Keywords

Navigation