Skip to main content
Log in

A machine learning approach to differentiate wide QRS tachycardia: distinguishing ventricular tachycardia from supraventricular tachycardia

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Differential diagnosis of wide QRS tachycardia (WQCT) has been a challenging issue. Published algorithms to distinguish ventricular tachycardia (VT) and supraventricular tachycardia (SVT) have limited diagnostic capabilities.

Methods

A total of 278 patients with WQCT from January 2010 to March 2022 were enrolled. The electrophysiological study confirmed SVT in 154 patients and VT in 65 ones. Two hundred nineteen WQCT 12-lead ECGs were randomly divided into development cohort (n = 165) and testing cohort (n = 54) data sets. The development cohort was split into a training group (n = 115) and an internal validation group (n = 50). Forty ECG features extracted from the 219 WQCT ECGs are fed into 9 iteratively trained ML algorithms. This novel ML algorithm was also compared with four published algorithms.

Results

In the development cohort, the Gradient Boosting Machine (GBM) model displayed the maximum area under curve (AUC) (0.91, 95% confidence interval (CI) 0.81–1.00). In the testing cohort, the GBM model had a higher AUC of 0.97 compared to 4 validated ECG algorithms, namely, Brugada (0.68), avR (0.62), RWPTII (0.72), and LLA algorithms (0.70). Accuracy, sensitivity, specificity, negative predictive value, and positive predictive value of the GBM model were 0.94, 0.97, 0.90, 0.94, and 0.95, respectively.

Conclusions

A GBM ML model contributes to distinguishing SVT from VT based on surface ECG features. In addition, we were able to identify important indicators for distinguishing WQCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

If there is a reasonable request, all the data can be obtained through the corresponding author.

References

  1. Brugada P, Brugada J, Mont L, Smeets J, Andries EW. A new approach to the differential diagnosis of a regular tachycardia with a wide QRS complex. Circulation. 1991;83(5):1649–59.

    Article  PubMed  CAS  Google Scholar 

  2. Griffith MJ, Garratt CJ, Mounsey P, Camm AJ. Ventricular tachycardia as default diagnosis in broad complex tachycardia. Lancet. 1994;343(8894):386–8.

    Article  PubMed  CAS  Google Scholar 

  3. Vereckei A, Duray G, Szenasi G, Altemose GT, Miller JM. New algorithm using only lead aVR for differential diagnosis of wide QRS complex tachycardia. Heart Rhythm. 2008;5(1):89–98.

    Article  PubMed  Google Scholar 

  4. Pava LF, Perafan P, Badiel M, Arango JJ, Mont L, Morillo CA, Brugada J. R-wave peak time at DII: a new criterion for differentiating between wide complex QRS tachycardias. Heart Rhythm. 2010;7(7):922–6.

    Article  PubMed  Google Scholar 

  5. Chen Q, Xu J, Gianni C, Trivedi C, Della Rocca DG, Bassiouny M, Canpolat U, Tapia AC, Burkhardt JD, Sanchez JE, et al. Simple electrocardiographic criteria for rapid identification of wide QRS complex tachycardia: the new limb lead algorithm. Heart Rhythm. 2020;17(3):431–8.

    Article  PubMed  Google Scholar 

  6. Jastrzebski M, Kukla P, Czarnecka D, Kawecka-Jaszcz K. Comparison of five electrocardiographic methods for differentiation of wide QRS-complex tachycardias. Europace. 2012;14(8):1165–71.

    Article  PubMed  Google Scholar 

  7. Missel R, Gyawali PK, Murkute JV, Li Z, Zhou S, AbdelWahab A, Davis J, Warren J, Sapp JL, Wang L. A hybrid machine learning approach to localizing the origin of ventricular tachycardia using 12-lead electrocardiograms. Comput Biol Med. 2020;126:104013.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Feeny AK, Chung MK, Madabhushi A, Attia ZI, Cikes M, Firouznia M, Friedman PA, Kalscheur MM, Kapa S, Narayan SM, et al. Artificial intelligence and machine learning in arrhythmias and cardiac electrophysiology. Circ Arrhythm Electrophysiol. 2020;13(8):e007952.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, Pandey M, Maliakal G, van Rosendael AR, Beecy AN, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 2019;40(24):1975–86.

    Article  PubMed  CAS  Google Scholar 

  10. Zhao WZR, Zhang J, Mao Y, Chen H, Ju W, Li M, Yang G, Gu K, Wang ZLH, Shi J, Jiang X, Kojodjojo P, Chen M, Zhang F. Machine learning for distinguishing right from left premature ventricular contractions origin using surface electrocardiogram features. Heart Rhythm. 2022;S1547–5271(22):02173–7.

    Google Scholar 

  11. Smole T, Zunkovic B, Piculin M, Kokalj E, Robnik-Sikonja M, Kukar M, Fotiadis DI, Pezoulas VC, Tachos NS, Barlocco F, et al. A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy. Comput Biol Med. 2021;135:104648.

    Article  PubMed  Google Scholar 

  12. Zhao W, Zhu R, Zhang J, Mao Y, Chen H, Ju W, Li M, Yang G, Gu K, Wang Z, Liu H, Shi J, Jiang X, Kojodjojo P, Chen M, Zhang F. Machine learning for distinguishing right from left premature ventricular contractions origin using surface electrocardiogram features, Heart Rhythm 2022. https://doi.org/10.1016/j.hrthm.2022.07.010.

  13. Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68(21):2287–95.

    Article  PubMed  Google Scholar 

  14. Li Y, Xie P, Lu L, Wang J, Diao L, Liu Z, Guo F, He Y, Liu Y, Huang Q, et al. An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nat Commun. 2017;8(1):347.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Filli L, Rosskopf AB, Sutter R, Fucentese SF, Pfirrmann CWA. MRI predictors of posterolateral corner instability: a decision tree analysis of patients with acute anterior cruciate ligament tear. Radiology. 2018;289(1):170–80.

    Article  PubMed  Google Scholar 

  16. Fabris F, Doherty A, Palmer D, de Magalhaes JP, Freitas AA. A new approach for interpreting random forest models and its application to the biology of ageing. Bioinformatics. 2018;34(14):2449–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mall R, Cerulo L, Garofano L, Frattini V, Kunji K, Bensmail H, Sabedot TS, Noushmehr H, Lasorella A, Iavarone A, et al. RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes. Nucleic Acids Res. 2018;46(7):e39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bertsimas D, Kallus N, Weinstein AM, Zhuo YD. Personalized diabetes management using electronic medical records. Diabetes Care. 2017;40(2):210–7.

    Article  PubMed  Google Scholar 

  19. Mao Z, Xia M, Jiang B, Xu D, Shi P. Incipient fault diagnosis for high-speed train traction systems via stacked generalization. IEEE Trans Cybernetics. 2020;52(8):7624–33.

    Article  Google Scholar 

  20. Mookiah MRK, Hogg S, MacGillivray TJ, Prathiba V, Pradeepa R, Mohan V, Anjana RM, Doney AS, Palmer CNA, Trucco E. A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med Image Anal. 2021;68:101905.

    Article  PubMed  Google Scholar 

  21. Tolios A, De Las RJ, Hovig E, Trouillas P, Scorilas A, Mohr T. Computational approaches in cancer multidrug resistance research: identification of potential biomarkers, drug targets and drug-target interactions. Drug Resist Updat. 2020;48:100662.

    Article  PubMed  CAS  Google Scholar 

  22. Moccetti F, Yadava M, Latifi Y, Strebel I, Pavlovic N, Knecht S, Asatryan B, Schaer B, Kühne M, Henrikson CA, Stephan FP. Simplified integrated clinical and electrocardiographic algorithm for differentiation of wide QRS complex tachycardia: the basel algorithm. Clin Electroencephalogr. 2022;8(7):831–9.

    Google Scholar 

Download references

Funding

This study was funded by 333 project of Jiangsu Province (BRA2017544) and the Zhongnanshan Medical Foundation of Guangdong Province (ZNSA‐2020017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FengXiang Zhang.

Ethics declarations

Ethical approval

This study was approved by the Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (Ethics No:2022-SR-638).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Supplementary file2 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZZ., Zhao, W., Mao, Y. et al. A machine learning approach to differentiate wide QRS tachycardia: distinguishing ventricular tachycardia from supraventricular tachycardia. J Interv Card Electrophysiol (2024). https://doi.org/10.1007/s10840-024-01743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10840-024-01743-9

Keywords

Navigation