Skip to main content
Log in

Distributions and number of drivers on real-time phase mapping associated with successful atrial fibrillation termination during catheter ablation for non-paroxysmal atrial fibrillation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Real-time phase mapping (ExTRa™) is useful in determining the strategy of catheter ablation for non-paroxysmal atrial fibrillation (AF). This study aimed to investigate the features of drivers of AF associated with its termination during ablation.

Methods

Thirty-six patients who underwent catheter ablation for non-paroxysmal AF using online real-time phase mapping (ExTRa™) were enrolled. A significant AF driver was defined as an area with a non-passively activated ratio of ≥ 50% on mapping analysis in the left atrium (LA). All drivers were simultaneously evaluated using a low-voltage area, complex fractionated atrial electrogram (CFAE), and rotational activity by unipolar electrogram analysis. The electrical characteristics of drivers were compared between patients with and without AF termination during the procedure.

Results

Twelve patients achieved AF termination during the procedure. The total number of drivers detected on the mapping was significantly lower (4.4 ± 1.6 vs. 7.4 ± 3.8, p = 0.007), and the drivers were more concentrated in limited LA regions (2.8 ± 0.9 vs. 3.9 ± 1.4, p = 0.009) in the termination group than in the non-termination group. The presence of drivers 2–6 with limited (≤ 3) LA regions showed a tenfold increase in the likelihood of AF termination, with 83% specificity and 67% sensitivity. Among 231 AF drivers, the drivers related to termination exhibited a greater overlap of CFAE (56.8 ± 34.1% vs. 39.5 ± 30.4%, p = 0.004) than the non-related drivers. The termination group showed a trend toward a lower recurrence rate after ablation (p = 0.163).

Conclusions

Rotors responsible for AF maintenance may be characterized in cases with concentrated regions and fewer drivers on mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are not publicly available due to ethical principles but are available from the corresponding author on reasonable request.

References

  1. Verma A, Jiang CY, Betts TR, Chen J, Deisenhofer I, Mantovan R, et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med. 2015;372(19):1812–22. https://doi.org/10.1056/NEJMoa1408288.

    Article  PubMed  Google Scholar 

  2. Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rappel WJ, Miller JM. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial. J Am Coll Cardiol. 2012;60(7):628–36. https://doi.org/10.1016/j.jacc.2012.05.022.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Seitz J, Bars C, Théodore G, Beurtheret S, Lellouche N, Bremondy M, et al. AF ablation guided by spatiotemporal electrogram dispersion without pulmonary vein isolation: a wholly patient-tailored approach. J Am Coll Cardiol. 2017;69(3):303–21. https://doi.org/10.1016/j.jacc.2016.10.065.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Verma A, Sarkozy A, Skanes A, Duytschaever M, Bulava A, Urman R, et al. Characterization and significance of localized sources identified by a novel automated algorithm during mapping of human persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2018;29(11):1480–8. https://doi.org/10.1111/jce.13742.

    Article  PubMed  Google Scholar 

  5. Sakata K, Okuyama Y, Ozawa T, Haraguchi R, Nakazawa K, Tsuchiya T, et al. Not all rotors, effective ablation targets for nonparoxysmal atrial fibrillation, are included in areas suggested by conventional indirect indicators of atrial fibrillation drivers: ExTRa Mapping project. J Arrhythm. 2018;34(2):176–84. https://doi.org/10.1002/joa3.12036.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Honarbakhsh S, Schilling RJ, Dhillon G, Ullah W, Keating E, Providencia R, et al. A novel mapping system for panoramic mapping of the left atrium: application to detect and characterize localized sources maintaining atrial fibrillation. JACC Clin Electrophysiol. 2018;4(1):124–34. https://doi.org/10.1016/j.jacep.2017.09.177.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Winfree AT. Spiral waves of chemical activity. Science (New York, NY). 1972;175(4022):634–6. https://doi.org/10.1126/science.175.4022.634.

    Article  ADS  CAS  Google Scholar 

  8. Yang G, Yang B, Wei Y, Zhang F, Ju W, Chen H, et al. Catheter ablation of nonparoxysmal atrial fibrillation using electrophysiologically guided substrate modification during sinus rhythm after pulmonary vein isolation. Circ Arrhythm Electrophysiol. 2016;9(2):e003382. https://doi.org/10.1161/circep.115.003382.

    Article  PubMed  Google Scholar 

  9. Hayward RM, Upadhyay GA, Mela T, Ellinor PT, Barrett CD, Heist EK, et al. Pulmonary vein isolation with complex fractionated atrial electrogram ablation for paroxysmal and nonparoxysmal atrial fibrillation: a meta-analysis. Heart Rhythm. 2011;8(7):994–1000. https://doi.org/10.1016/j.hrthm.2011.02.033.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sau A, Al-Aidarous S, Howard J, Shalhoub J, Sohaib A, Shun-Shin M, et al. Optimum lesion set and predictors of outcome in persistent atrial fibrillation ablation: a meta-regression analysis. Europace. 2019;21(8):1176–84. https://doi.org/10.1093/europace/euz108.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ohe M, Haraguchi G, Kumanomido J, Obuchi A, Hori K, Ito S, et al. New tailored approach using a revised assessment of fragmented potentials for persistent atrial fibrillation: Early area defragmentation by modified CFAE module. J Cardiovasc Electrophysiol. 2019;30(6):844–53. https://doi.org/10.1111/jce.13888.

    Article  PubMed  Google Scholar 

  12. Scherr D, Khairy P, Miyazaki S, Aurillac-Lavignolle V, Pascale P, Wilton SB, et al. Five-year outcome of catheter ablation of persistent atrial fibrillation using termination of atrial fibrillation as a procedural endpoint. Circ Arrhythm Electrophysiol. 2015;8(1):18–24. https://doi.org/10.1161/CIRCEP.114.001943.

    Article  CAS  PubMed  Google Scholar 

  13. Park YM, Choi JI, Lim HE, Park SW, Kim YH. Is pursuit of termination of atrial fibrillation during catheter ablation of great value in patients with longstanding persistent atrial fibrillation? J Cardiovasc Electrophysiol. 2012;23(10):1051–8. https://doi.org/10.1111/j.1540-8167.2012.02370.x.

    Article  PubMed  Google Scholar 

  14. Baykaner T, Rogers AJ, Meckler GL, Zaman J, Navara R, Rodrigo M, et al. Clinical implications of ablation of drivers for atrial fibrillation: a systematic review and meta-analysis. Circ Arrhythm Electrophysiol. 2018;11(5):e006119. https://doi.org/10.1161/circep.117.006119.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zaman JAB, Sauer WH, Alhusseini MI, Baykaner T, Borne RT, Kowalewski CAB, et al. Identification and characterization of sites where persistent atrial fibrillation is terminated by localized ablation. Circ Arrhythm Electrophysiol. 2018;11(1):e005258. https://doi.org/10.1161/circep.117.005258.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kowalewski CAB, Shenasa F, Rodrigo M, Clopton P, Meckler G, Alhusseini MI, et al. Interaction of localized drivers and disorganized activation in persistent atrial fibrillation: reconciling putative mechanisms using multiple mapping techniques. Circ Arrhythm Electrophysiol. 2018;11(6):e005846. https://doi.org/10.1161/circep.117.005846.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Navara R, Leef G, Shenasa F, Kowalewski C, Rogers AJ, Meckler G, et al. Independent mapping methods reveal rotational activation near pulmonary veins where atrial fibrillation terminates before pulmonary vein isolation. J Cardiovasc Electrophysiol. 2018;29(5):687–95. https://doi.org/10.1111/jce.13446.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Narayan SM, Krummen DE, Rappel WJ. Clinical mapping approach to diagnose electrical rotors and focal impulse sources for human atrial fibrillation. J Cardiovasc Electrophysiol. 2012;23(5):447–54. https://doi.org/10.1111/j.1540-8167.2012.02332.x.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nogami A, Kurita T, Abe H, Ando K, Ishikawa T, Imai K, et al. JCS/JHRS 2019 guideline on non-pharmacotherapy of cardiac arrhythmias. J Arrhythm. 2021;37(4):709–870. https://doi.org/10.1002/joa3.12491.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nakamura T, Kiuchi K, Fukuzawa K, Takami M, Watanabe Y, Izawa Y, et al. The impact of the atrial wall thickness in normal/mild late-gadolinium enhancement areas on atrial fibrillation rotors in persistent atrial fibrillation patients. J Arrhythm. 2022;38(2):221–31. https://doi.org/10.1002/joa3.12676.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kumagai K, Toyama H, Ashihara T. Impact of box isolation on rotors and multiple wavelets in persistent atrial fibrillation. Circ J. 2020;84(3):419–26. https://doi.org/10.1253/circj.CJ-19-0826.

    Article  PubMed  Google Scholar 

  22. Ashihara T, Haraguchi R, Nakazawa K, Namba T, Ikeda T, Nakazawa Y, et al. The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: implications for electrogram-based catheter ablation. Circ Res. 2012;110(2):275–84. https://doi.org/10.1161/circresaha.111.255026.

    Article  CAS  PubMed  Google Scholar 

  23. Kawaji T, Aizawa T, Hojo S, Yaku H, Nakatsuma K, Kaneda K, et al. Instability of rotational activation as atrial fibrillation drivers: assessment by ExTRa Mapping system. Pacing Clin Electrophysiol. 2022;45(5):688–95. https://doi.org/10.1111/pace.14502.

    Article  PubMed  Google Scholar 

  24. Nishimura A, Harada M, Ashihara T, Nomura Y, Motoike Y, Koshikawa M, et al. Effect of pulmonary vein isolation on rotor/multiple wavelet dynamics in persistent atrial fibrillation, association with vagal response and implications for adjunctive ablation. Heart Vessels. 2022. https://doi.org/10.1007/s00380-022-02209-6.

    Article  PubMed  Google Scholar 

  25. Nakamura T, Kiuchi K, Fukuzawa K, Takami M, Watanabe Y, Izawa Y, et al. Late-gadolinium enhancement properties associated with atrial fibrillation rotors in patients with persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2021;32(4):1005–13. https://doi.org/10.1111/jce.14933.

    Article  PubMed  Google Scholar 

  26. Haissaguerre M, Hocini M, Denis A, Shah AJ, Komatsu Y, Yamashita S, et al. Driver domains in persistent atrial fibrillation. Circulation. 2014;130(7):530–8. https://doi.org/10.1161/circulationaha.113.005421.

    Article  PubMed  Google Scholar 

  27. Pappone C, Ciconte G, Vicedomini G, Mangual JO, Li W, Conti M, et al. Clinical outcome of electrophysiologically guided ablation for nonparoxysmal atrial fibrillation using a novel real-time 3-dimensional mapping technique: results from a prospective randomized trial. Circ Arrhythm Electrophysiol. 2018;11(3):e005904. https://doi.org/10.1161/circep.117.005904.

    Article  PubMed  Google Scholar 

  28. Kappel C, Reiss M, Rodrigo M, Ganesan P, Narayan SM, Rappel WJ. Predicting acute termination and non-termination during ablation of human atrial fibrillation using quantitative indices. Front Physiol. 2022;13:939350. https://doi.org/10.3389/fphys.2022.939350.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yamabe H, Kanazawa H, Itoh M, Kaneko S, Ogawa H. Difference in the maintenance mechanism of atrial fibrillation perpetuated after pulmonary vein isolation between paroxysmal and persistent atrial fibrillation: effects of subsequent stepwise ablation. Int J Cardiol. 2016;210:109–18. https://doi.org/10.1016/j.ijcard.2016.02.092.

    Article  PubMed  Google Scholar 

  30. Quintanilla JG, Alfonso-Almazán JM, Pérez-Castellano N, Pandit SV, Jalife J, Pérez-Villacastín J, et al. Instantaneous amplitude and frequency modulations detect the footprint of rotational activity and reveal stable driver regions as targets for persistent atrial fibrillation ablation. Circ Res. 2019;125(6):609–27. https://doi.org/10.1161/circresaha.119.314930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guillem MS, Climent AM, Rodrigo M, Fernández-Avilés F, Atienza F, Berenfeld O. Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovasc Res. 2016;109(4):480–92. https://doi.org/10.1093/cvr/cvw011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li N, Csepe TA, Hansen BJ, Sul LV, Kalyanasundaram A, Zakharkin SO, et al. Adenosine-induced atrial fibrillation: localized reentrant drivers in lateral right atria due to heterogeneous expression of adenosine a1 receptors and GIRK4 subunits in the human heart. Circulation. 2016;134(6):486–98. https://doi.org/10.1161/circulationaha.115.021165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Atienza F, Calvo D, Almendral J, Zlochiver S, Grzeda KR, Martínez-Alzamora N, et al. Mechanisms of fractionated electrograms formation in the posterior left atrium during paroxysmal atrial fibrillation in humans. J Am Coll Cardiol. 2011;57(9):1081–92. https://doi.org/10.1016/j.jacc.2010.09.066.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Narayan SM, Shivkumar K, Krummen DE, Miller JM, Rappel WJ. Panoramic electrophysiological mapping but not electrogram morphology identifies stable sources for human atrial fibrillation: stable atrial fibrillation rotors and focal sources relate poorly to fractionated electrograms. Circ Arrhythm Electrophysiol. 2013;6(1):58–67. https://doi.org/10.1161/circep.111.977264.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kalifa J, Tanaka K, Zaitsev AV, Warren M, Vaidyanathan R, Auerbach D, et al. Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation. 2006;113(5):626–33. https://doi.org/10.1161/circulationaha.105.575340.

    Article  PubMed  Google Scholar 

  36. Ammar-Busch S, Reents T, Knecht S, Rostock T, Arentz T, Duytschaever M, et al. Correlation between atrial fibrillation driver locations and complex fractionated atrial electrograms in patients with persistent atrial fibrillation. Pacing Clin Electrophysiol. 2018;41(10):1279–85. https://doi.org/10.1111/pace.13483.

    Article  PubMed  Google Scholar 

  37. Ciconte G, Vicedomini G, Li W, Mangual JO, McSpadden L, Ryu K, et al. Non-paroxysmal atrial fibrillation mapping: characterization of the electrophysiological substrate using a novel integrated mapping technique. Europace. 2019;21(8):1193–202. https://doi.org/10.1093/europace/euz123.

    Article  PubMed  Google Scholar 

  38. Kochhäuser S, Verma A, Dalvi R, Suszko A, Alipour P, Sanders P, et al. Spatial relationships of complex fractionated atrial electrograms and continuous electrical activity to focal electrical sources: implications for substrate ablation in human atrial fibrillation. JACC Clin Electrophysiol. 2017;3(11):1220–8. https://doi.org/10.1016/j.jacep.2017.05.013.

    Article  PubMed  Google Scholar 

  39. Cochet H, Dubois R, Yamashita S, Al Jefairi N, Berte B, Sellal JM, et al. Relationship between fibrosis detected on late gadolinium-enhanced cardiac magnetic resonance and re-entrant activity assessed with electrocardiographic imaging in human persistent atrial fibrillation. JACC Clin Electrophysiol. 2018;4(1):17–29. https://doi.org/10.1016/j.jacep.2017.07.019.

    Article  PubMed  Google Scholar 

  40. Zahid S, Cochet H, Boyle PM, Schwarz EL, Whyte KN, Vigmond EJ, et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc Res. 2016;110(3):443–54. https://doi.org/10.1093/cvr/cvw073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu FZ, Zaman JAB, Ehdaie A, Xue YM, Cingolani E, Bresee C, et al. Atrial fibrillation mechanisms before and after pulmonary vein isolation characterized by noncontact charge density mapping. Heart Rhythm. 2022;19(9):1423–32. https://doi.org/10.1016/j.hrthm.2022.03.1232.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Yanagisawa.

Ethics declarations

Ethics approval and consent to participate

This study was approved by local institutional ethics committee of the Nagoya University Hospital. All patients provided written informed consent before the procedure.

Conflict of interest

Drs. Yanagisawa and Shibata are affiliated with a department sponsored by Medtronic Japan. The other authors have no conflicts of interest to declare.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riku, S., Inden, Y., Yanagisawa, S. et al. Distributions and number of drivers on real-time phase mapping associated with successful atrial fibrillation termination during catheter ablation for non-paroxysmal atrial fibrillation. J Interv Card Electrophysiol 67, 303–317 (2024). https://doi.org/10.1007/s10840-023-01588-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-023-01588-8

Keywords

Navigation