Skip to main content
Log in

Establishment of a lncRNA-miRNA-mRNA network in a rat model of atrial fibrosis by whole transcriptome sequencing

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Dysregulation of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) plays important roles in atrial fibrillation (AF). This study aimed to identify crucial lncRNAs, miRNAs, and mRNAs in AF based on whole transcriptome sequencing.

Methods

Thirty Sprague Dawley rats were randomly stratified into control and chronic intermittent hypoxia (CIH) groups (n = 15 in each). Hematoxylin-eosin staining, Masson staining, immunohistochemical assay, and western blotting were used to evaluate this model. Thereafter, atrial tissues were sent for whole transcriptome sequencing. Finally, fibrosis-related competing endogenous RNA (ceRNA) regulatory networks were built, and the relative levels of lncRNAs, miRNAs, and mRNAs were validated by real-time quantitative polymerase chain reaction (RT-qPCR) or western blotting.

Results

A CIH-induced atrial fibrosis rat model was successfully constructed. After sequencing, 268 differentially expressed lncRNAs (DELs), 20 differentially expressed miRNAs (DEMs), and 436 differentially expressed genes (DEGs) were identified. Functional analyses showed that these DEGs were associated with several processes and pathways, including “cell division,” “IL-17 signaling pathway,” “NOD-like receptor signaling pathway,” and “cell adhesion molecules.” Fibrosis-related ceRNA networks were then built, comprising five lncRNAs, seven miRNAs, and 19 DEGs. RT-qPCR and western blotting results showed that the patterns of lncRNAs (NONRATT016396.2, NONRATT001596.2, NONRATT011456.2), miRNAs (miR-10b-3p, miR-29b-3p), and mRNAs (Gng7 and Wnt2b) were consistent with sequencing analyses.

Conclusions

The DELs, DEMs, and DEGs identified in this study may participate in atrial fibrosis processes, and the occurrence and progression of AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

I confirm I have included a Data Availability Statement in my manuscript. BioProject: PRJNA786466

Abbreviations

AF:

atrial fibrillation

CIH:

chronic intermittent hypoxia

lncRNAs:

long non-coding RNAs

miRNAs:

microRNAs

ceRNA:

competing endogenous RNAs

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

log2 FC:

log2 fold change

References

  1. Ponamgi SP, Siontis KC, Rushlow DR, Graff-Radford J, Montori V, Noseworthy PA. Screening and management of atrial fibrillation in primary care. Bmj. 2021;373:n379

  2. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 study. Circulation. 2014;129(8):837–47.

    Article  Google Scholar 

  3. Anumonwo JM, Kalifa J. Risk factors and genetics of atrial fibrillation. Heart Fail Clin. 2016;12(2):157–66.

    Article  Google Scholar 

  4. Nguyen TN, Hilmer SN, Cumming RG. Review of epidemiology and management of atrial fibrillation in developing countries. Int J Cardiol. 2013;167(6):2412–20.

    Article  Google Scholar 

  5. Huang HD, Darbar D. Genetic risk scores for atrial fibrillation: do they improve risk estimation? Can J Cardiol. 33(4):422–424. https://doi.org/10.1016/j.cjca.2016.12.006

  6. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol. 2008;1(1):62–73.

    Article  Google Scholar 

  7. Kim D, Yang PS, You SC, Sung JH, Jang E, Yu HT, et al. Treatment timing and the effects of rhythm control strategy in patients with atrial fibrillation: nationwide cohort study. Bmj. 2021;373:n991.

  8. Babapoor-Farrokhran S, Gill D, Rasekhi RT. The role of long noncoding RNAs in atrial fibrillation. Heart Rhythm. 2020;17(6):1043–9.

    Article  Google Scholar 

  9. Franco D, Aranega A, Dominguez JN. Non-coding RNAs and atrial fibrillation. Adv Exp Med Biol. 2020;1229:311–25.

  10. Zhao L, Ma Z, Guo Z, Zheng M, Li K, Yang X. Analysis of long non-coding RNA and mRNA profiles in epicardial adipose tissue of patients with atrial fibrillation. Biomed Pharmacother. 2020;121(109634):12.

    Google Scholar 

  11. Du J, Li Z, Wang X, Li J, Liu D, Wei J, et al. Long noncoding RNA TCONS-00106987 promotes atrial electrical remodelling during atrial fibrillation by sponging miR-26 to regulate KCNJ2. J Cell Mol Med. 2020;24(21):12777–88.

    Article  CAS  Google Scholar 

  12. Cao F, Li Z, Ding WM, Yan L, Zhao QY. LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation. Mol Med. 2019;25(1):019–0074.

    Article  Google Scholar 

  13. Wang W, Zhang K, Li X, Ma Z, Zhang Y, Yuan M, et al. Doxycycline attenuates chronic intermittent hypoxia-induced atrial fibrosis in rats. Cardiovasc Ther. 2018;36(3):e12321. https://doi.org/10.1111/1755-5922.12321.

    Article  CAS  PubMed  Google Scholar 

  14. Ma Z, Zhang K, Wang Y, Wang W, Yang Y, Liang X, et al. Doxycycline improves fibrosis-induced abnormalities in atrial conduction and vulnerability to atrial fibrillation in chronic intermittent hypoxia rats. Med Sci Monit. 2020;26:e918883. https://doi.org/10.12659/MSM.918883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

    Article  CAS  Google Scholar 

  16. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):20.

    Article  Google Scholar 

  17. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. https://doi.org/10.1016/j.cell.2004.12.035.

  18. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets. Plos Biol. 2004;2(11):e363.

    Article  Google Scholar 

  19. Otasek D, Morris JH, Bouças J, Pico AR, Demchak B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 2019;20(1):019–1758.

    Article  Google Scholar 

  20. Heijman J, Algalarrondo V, Voigt N, Melka J, Wehrens XH, Dobrev D, et al. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovasc Res. 2016;109(4):467–79. https://doi.org/10.1093/cvr/cvv275.

    Article  CAS  PubMed  Google Scholar 

  21. Sohns C, Marrouche NF. Atrial fibrillation and cardiac fibrosis. Eur Heart J. 2020;41(10):1123–31. https://doi.org/10.1093/eurheartj/ehz786.

    Article  CAS  PubMed  Google Scholar 

  22. Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol. 2017;3(5):425–35. https://doi.org/10.1016/j.jacep.2017.03.002.

    Article  PubMed  Google Scholar 

  23. Wulandari E, Jusman SW, Moenadjat Y, Jusuf AA, Sadikin M. Expressions of Collagen I and III in hypoxic keloid tissue. Kobe J Med Sci. 2016;62(3):E58-69.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Grosman-Rimon L, Billia F, Wright E, Carasso S, Elbaz-Greener G, Kachel E, et al. Neurohormones, inflammatory mediators, and cardiovascular injury in the setting of heart failure. Heart Fail Rev. 2020;25(5):685–701.

    Article  CAS  Google Scholar 

  25. Kim KK, Sheppard D, Chapman HA. TGF-β1 signaling and tissue fibrosis. Cold Spring Harbor Perspect Biol. 2018;10(4):a022293. https://doi.org/10.1101/cshperspect.a022293.

    Article  CAS  Google Scholar 

  26. Lv W, Booz GW, Fan F, Wang Y, Roman RJ. Oxidative stress and renal fibrosis: recent insights for the development of novel therapeutic strategies. Front Physiol. 2018;9:105. https://doi.org/10.3389/fphys.2018.00105.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gal P, Marrouche NF. Magnetic resonance imaging of atrial fibrosis: redefining atrial fibrillation to a syndrome. Eur Heart J. 2017;38(1):14–9. https://doi.org/10.1093/eurheartj/ehv514.

    Article  PubMed  Google Scholar 

  28. Tian XP, Wang CY, Jin XH, Li M, Wang FW, Huang WJ, et al. Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics. 2019;9(7):1965–79.

    Article  CAS  Google Scholar 

  29. Jin L, Zhang J, Fu HQ, Zhang X, Pan YL. FOXO3a inhibits the EMT and metastasis of breast cancer by regulating TWIST-1 mediated miR-10b/CADM2 axis. Transl Oncol. 2021;14(7):101096.

    Article  Google Scholar 

  30. Wang D, Wang Z, Zhang L, Sun S. LncRNA PDCD4-AS1 alleviates triple negative breast cancer by increasing expression of IQGAP2 via miR-10b-5p. Transl Oncol. 2021;14(1):25.

    Google Scholar 

  31. Galluzzo A, Gallo S, Pardini B, Birolo G, Fariselli P, Boretto P, et al. Identification of novel circulating microRNAs in advanced heart failure by next-generation sequencing. ESC Heart Fail. 2021;2(10):13371.

    Google Scholar 

  32. Li H, Pan Z, Chen Q, Yang Z, Zhang D. SMILR aggravates the progression of atherosclerosis by sponging miR-10b-3p to regulate KLF5 expression. Inflammation. 2020;43(5):1620–33.

    Article  CAS  Google Scholar 

  33. Xie Y, Wang Q, Gao N, Wu F, Lan F, Zhang F, et al. MircroRNA-10b promotes human embryonic stem cell-derived cardiomyocyte proliferation via novel target gene LATS1. Mol Ther Nucleic Acids. 2020;19:437–45.

    Article  CAS  Google Scholar 

  34. Yan Y, Shi R, Yu X, Sun C, Zang W, Tian H. Identification of atrial fibrillation-associated microRNAs in left and right atria of rheumatic mitral valve disease patients. Genes Genet Syst. 2019;94(1):23–34.

    Article  CAS  Google Scholar 

  35. Fang L, Ellims AH, Moore XL, White DA, Taylor AJ, Chin-Dusting J, et al. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Transl Med. 2015;13(314):015–0672.

    Google Scholar 

  36. Yang Q, Cui J, Wang P, Du X, Wang W, Zhang T, et al. Changes in interconnected pathways implicating microRNAs are associated with the activity of apocynin in attenuating myocardial fibrogenesis. Eur J Pharmacol. 2016;784:22–32.

    Article  CAS  Google Scholar 

  37. Steimle JD, Rankin SA, Slagle CE, Bekeny J, Rydeen AB, Chan SS, et al. Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development. Proc Natl Acad Sci U S A. 2018;115(45):E10615–24.

    Article  CAS  Google Scholar 

  38. Xie H, Miao N, Xu D, Zhou Z, Ni J, Yin F, et al. FoxM1 promotes Wnt/β-catenin pathway activation and renal fibrosis via transcriptionally regulating multi-Wnts expressions. J Cell Mol Med. 2021;25(4):1958–71.

    Article  CAS  Google Scholar 

  39. Mizutani M, Wu JC, Nusse R. Fibrosis of the neonatal mouse heart after cryoinjury is accompanied by Wnt signaling activation and epicardial-to-mesenchymal transition. J Am Heart Assoc. 2016;5(3):002457.

    Article  Google Scholar 

  40. Pfister O, Lorenz V, Oikonomopoulos A, Xu L, Häuselmann SP, Mbah C, et al. FLT3 activation improves post-myocardial infarction remodeling involving a cytoprotective effect on cardiomyocytes. J Am Coll Cardiol. 2014;63(10):1011–9.

    Article  CAS  Google Scholar 

  41. Ma W, Liang F, Zhan H, Jiang X, Gao C, Zhang X, et al. Activated FMS-like tyrosine kinase 3 ameliorates angiotensin II-induced cardiac remodelling. Acta Physiol. 2020;230(2):18.

    Article  Google Scholar 

  42. Zheng H, Tian H, Yu X, Ren P, Yang Q. G protein gamma 7 suppresses progression of lung adenocarcinoma by inhibiting E2F transcription factor 1. Int J Biol Macromol. 2021;182:858–65.

    Article  CAS  Google Scholar 

  43. Ji W, Diao YL, Qiu YR, Ge J, Cao XC, Yu Y. LINC00665 promotes breast cancer progression through regulation of the miR-379-5p/LIN28B axis. Cell Death Dis. 2020;11(1):019–2213.

    Article  Google Scholar 

  44. Hu CY, Chen J, Qin XH, You P, Ma J, Zhang J, et al. Long non-coding RNA NORAD promotes the prostate cancer cell extracellular vesicle release via microRNA-541-3p-regulated PKM2 to induce bone metastasis of prostate cancer. J Exp Clin Cancer Res. 2021;40(1):021–01891.

    Article  Google Scholar 

  45. Dai H, Ji X, Huang X, Li W, Shi Z. MiR-379 relieves myocardial injury after acute myocardial infarction by regulating tumor necrosis factor-α-induced protein 8. Panminerva Med. 2020;14(10):03929–4.

    Google Scholar 

  46. Hsieh C-S, Huang P-S, Chang S-N, Wu C-K, Hwang J-J, Chuang EY, et al. Genome-wide copy number variation association study of atrial fibrillation related thromboembolic stroke. J Clin Med. 2019;8(3):332. https://doi.org/10.3390/jcm8030332.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China Youth Science Foundation Project (No. 81700304, No. 82000313), Tianjin Natural Science Foundation (No. 16KPXMSF00140, No. 18JCYBJC92200), The Scientific Research Fund Project of Key Laboratory of Second Hospital of Tianjin Medical University (No. 2019ZDSYS02, No. 2019ZDSYS07, No. 2019ZDSYS10, No. 2019ZDSYS11), The Research Fund for Central Laboratory of Second Hospital of Tianjin Medical University (No. 2020YDEY05), The Science & Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2020KJ168), and The PhD Research Foundation of Affiliated Hospital of Jining Medical University (No. 2021-BS-005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enzhao Liu or Xue Liang.

Ethics declarations

Ethics approval and consent to participate

All animal studies were conducted in compliance with guidelines from the Animal Administration Committee of Tianjin Medical University (approval number: TMUaMEC2016012).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bo Zhao, Weiding Wang, and Yu Liu are co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 14 KB)

Supplementary file2 (XLSX 2909 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Wang, W., Liu, Y. et al. Establishment of a lncRNA-miRNA-mRNA network in a rat model of atrial fibrosis by whole transcriptome sequencing. J Interv Card Electrophysiol 63, 723–736 (2022). https://doi.org/10.1007/s10840-022-01120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-022-01120-4

Keywords

Navigation